Cho tam giác ABC có \(\widehat{A}\) = 120o , đường phân giác AD. Chứng minh rằng:
\(\dfrac{1}{AB}+\dfrac{1}{AC}=\dfrac{1}{AD}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ \(AH\perp BC\) tại H
Áp dụng hệ thức lượng trong tam giác vuông BAC có:
\(\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{AH^2}\)
Do AD và AE lần lượt là hai tia phân giác trong và ngoài tại đỉnh A
\(\Rightarrow AD\perp AE\)
Áp dụng hệ thức lượng vào tam giác vuông AED có:
\(\dfrac{1}{AE^2}+\dfrac{1}{AD^2}=\dfrac{1}{AH^2}\) (AH là đường cao của tam giác AED do \(AH\perp BC\) hay \(AH\perp ED\))
\(\Rightarrow\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{AE^2}+\dfrac{1}{DA^2}\)
Vậy...
Bạn tk câu này mình làm rồi:
Cho ΔABC nhọn, đường cao AH. Gọi D, E lần lượt là hình chiếu của H trên AB, AC.CMR:a) DE=AH.SinAb) Cho AI là phân giác g... - Hoc24
nhớ đổi điểm I thành điểm D
Sửa: CMR: \(\dfrac{1}{AB}+\dfrac{1}{AC}=\dfrac{\sqrt{2}}{AD}\)
\(DH\perp AB\Rightarrow DH\text{//}AC\\ AD\text{ là p/g}\Rightarrow\widehat{CAD}=\widehat{BAD}=90^0\\ \Rightarrow\Delta ADH\text{ vuông cân tại }H\\ \Rightarrow DH=AH\\ DH\text{//}AC\Rightarrow\dfrac{DH}{AC}=\dfrac{BH}{AB}\Rightarrow\dfrac{AH}{AC}=\dfrac{AB-AH}{AB}\\ \Rightarrow\dfrac{AH}{AC}=1-\dfrac{AH}{AB}\\ \Rightarrow\dfrac{AH}{AC}+\dfrac{AH}{AB}=1\\ \Rightarrow AH\left(\dfrac{1}{AB}+\dfrac{1}{AC}\right)=1\\ \Rightarrow\dfrac{1}{AB}+\dfrac{1}{AC}=\dfrac{1}{AH}\)
Lại có \(\Delta AHD\text{ vuông cân tại }H\Rightarrow AD=\sqrt{AH^2+HD^2}=\sqrt{2AH^2}=AH\sqrt{2}\)
\(\Rightarrow AH=\dfrac{AD}{\sqrt{2}}\\ \Rightarrow\dfrac{1}{AB}+\dfrac{1}{AC}=\dfrac{1}{\dfrac{AD}{\sqrt{2}}}=\dfrac{\sqrt{2}}{AD}\left(đpcm\right)\)
Qua D kẻ đường thẳng song song với AB cắt AC tại E.
Dễ thấy tam giác AED vuông cân tại E nên \(\dfrac{AD}{\sqrt{2}}=AE=ED\).
Theo định lý Thales ta có: \(\dfrac{DE}{AB}=\dfrac{CE}{CA}=1-\dfrac{AE}{CA}=1-\dfrac{DE}{CA}\Rightarrow\dfrac{1}{DE}=\dfrac{1}{AB}+\dfrac{1}{AC}\Rightarrow\dfrac{\sqrt{2}}{AD}=\dfrac{1}{AB}+\dfrac{1}{AC}\).
Vậy ta có đpcm.
https://olm.vn/hoi-dap/detail/273894454691.html