K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
17 tháng 12 2020

Hình vẽ:

undefined

AH
Akai Haruma
Giáo viên
17 tháng 12 2020

Lời giải:

a) 

Dễ thấy \(IA=IB=R(I); KA=KB=R(K)\) nên tam giác \(IAB; KAC\) là tam giác cân.

Áp dụng tính chất tam giác cân và tính chất tiếp tuyến: \(\widehat{IAB}=\widehat{IBA}=\widehat{IBC}-\widehat{ABC}=90^0-\widehat{ABC}\)

\(\widehat{KAC}=\widehat{KCA}=\widehat{KCB}-\widehat{ACB}=90^0-\widehat{ACB}\)

\(\Rightarrow \widehat{IAB}+\widehat{KAC}=180^0-(\widehat{ABC}+\widehat{ACB})\)

\(\Leftrightarrow \widehat{IAB}+\widehat{KAC}=180^0-90^0=90^0\)

\(\Leftrightarrow \widehat{IAK}=90^0+\widehat{BAC}=90^0+90^0=180^0\)

\(\Rightarrow I,A,K\) thẳng hàng.

Hai đường tròn (I); (K) giao nhau tại A và I,A,K thẳng hàng nên IA+AK=IK nên (I) và (K) tiếp xúc với nhau tại A.

b) 

Tam giác BAC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền nên \(AM=\frac{BC}{2}=BM\Rightarrow \triangle MAB\) cân tại M

\(\Rightarrow \widehat{MAB}=\widehat{MBA}=\widehat{CBA}=90^0-\widehat{IBA}=90^0-\widehat{IAB}\)

\(\Rightarrow \widehat{IAM}=\widehat{MAB}+\widehat{IAB}=90^0\Rightarrow IA\perp AM\) nên AM là tiếp tuyến của (I) 

Hoàn toàn tương tự ta có AM là tiếp tuyến của (K)

Ta có đpcm.

 

 

https://diendantoanhoc.net/index.php?app=core&module=attach&section=attach&attach_id=20602

Vào link này xem nhé

Học tốt!!!!!!!