Cho tam giác ABC. Điểm O nằm trong tam giác. AO cắt BC tại P,BO cắt AC tại Q, CO cắt AB tại R
C/M: CP/AP+OQ/BQ+QR/CR=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt S OBC=S1, S OAC=S2, S OAB=S3, S=S ABC
Kẻ AH vuông góc BC< OK vuông góc BC
=>OK//AH
OP/AP=OK/AH=1/2*OK*BC/1/2*AH*CB=S1/S
=>\(\dfrac{AP-OP}{AP}=\dfrac{S-S_1}{S}\)
=>\(\dfrac{OA}{AP}=\dfrac{S_2+S_3}{S}\)
Cmtương tự, ta được: \(\dfrac{OB}{BQ}=\dfrac{S_1+S_3}{S};\dfrac{OC}{CR}=\dfrac{S_1+S_2}{S}\)
=>\(\dfrac{OA}{AP}+\dfrac{OB}{BQ}+\dfrac{OC}{CR}=2\)
Ta có : \(\frac{OM}{AM}=\frac{S_{BOC}}{S_{ABC}}\) ; \(\frac{ON}{BN}=\frac{S_{AOC}}{S_{ABC}}\) ; \(\frac{OP}{CP}=\frac{S_{AOB}}{S_{ABC}}\)
\(\Rightarrow\frac{OM}{AM}+\frac{ON}{BN}+\frac{OP}{CP}=\frac{S_{ABC}}{S_{ABC}}=1\)
Áp dụng bđt Bunhiacopxki, ta có :
\(\frac{AM}{OM}+\frac{BN}{ON}+\frac{CP}{OP}=\left(\frac{AM}{OM}+\frac{BN}{ON}+\frac{CP}{OP}\right).\left(\frac{OM}{AM}+\frac{ON}{BN}+\frac{OP}{CP}\right)\ge\)
\(\ge\left(\sqrt{\frac{AM}{OM}.\frac{OM}{AM}}+\sqrt{\frac{BN}{ON}.\frac{ON}{BN}}+\sqrt{\frac{CP}{OP}.\frac{OP}{CP}}\right)^2=\left(1+1+1\right)^2=9\)
Vậy \(\frac{AM}{OM}+\frac{BN}{ON}+\frac{CP}{OP}\ge9\) (đpcm)
mai mình nghĩ cho cái này thay nọ thay kia, áp dụng ta lét ( lấy B làm đỉnh ) gợi ý là vậy chứ chưa giải ra :v