Cho góc xOy bẹt. Trên 2 nửa mặt phẳng đối nhau bờ xy vẽ các tia Om, On sao cho góc xOm= góc yOn= a độ (0<a<180 độ). Hỏi 2 tia Om, On có vị trí như thế nào đới với nhau?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) Ta có: x O m ^ = 30 0 , y O n ^ = 2 x O m ^ = 2.30 0 = 60 0 Vì x O m ^ + m O y ^ = x O y ^ = 180 0 (hai góc kề bù) => m O y ^ = 180 0 − x O m ^ = 180 0 − 30 0 = 150 0 +) Xét trên nửa mặt phẳng có bờ chứa tia Oy, có : y O n ^ < y O m ^ (vì 0 ° < 60 ° < 150 ° ) => Tia On nằm giữa hai tia Oy và Om ⇒ m O n ^ + n O y ^ = m O y ^ = 150 0 ⇒ m O n ^ + 60 0 = 150 0 ⇒ m O n ^ = 150 0 − 60 0 ⇒ m O n ^ = 90 0 ⇒ O m ⊥ O n . |
a) Vì ˆxOyxOy^ là góc bẹt
⇒ Ox và Oy là 2 tia đối nhau
⇒ Tia On nằm giữa 2 tia Ox và Oy
⇒ˆxOn+ˆyOn=ˆxOy
⇒ˆxOn+150o=180o
⇒ˆxOn=30o
Trên cùng 1 nửa mặt phẳng bờ xy, ta có:
ˆxOn<ˆxOm(30o<60o)
⇒ Tia On nằm giữa 2 tia Ox và Om
⇒ˆxOn+ˆmOn=ˆxOm
⇒30o+ˆmOn=60o
⇒ˆmOn=30o
b) Ta có: ˆxOn=ˆmOn(=30o)
Lại có: Tia On nằm giữa 2 tia Ox và Om
⇒ Tia On là tia phân giác của ˆxOm
Bài làm
Ta có: \(\widehat{xOy}=\widehat{xOm}+\widehat{yOn}+\widehat{mOz}+\widehat{zOn}\)
Mà \(\widehat{xOm}=\widehat{yOn}=2\widehat{xOm}\)
Oz là tia phân giác của \(\widehat{mOn}\)
=> \(\widehat{mOz}=\widehat{zOn}=2\widehat{mOz}\)
=> \(\widehat{xOy}=2\widehat{xOm}+2\widehat{mOz}\)
Hay \(180^0=2\widehat{xOm}+2\widehat{mOz}\)
=> \(180^0=2(\widehat{xOm}+\widehat{mOz})\)
=> \(\widehat{xOm}+\widehat{mOz}=180^0:2\)
=> \(\widehat{xOm}+\widehat{mOz}=90^0\)
Hay \(\widehat{xOz}=90^0\)
=> \(Oz\perp xy\)
Vậy \(Oz\perp xy\)( đpcm )
# Học tốt #