Cho tam giác ABC cân tại A. Vẽ AH⊥BC
a)CM: △AHB=△AHC
b)Vẽ HM⊥AB, HN⊥AC. CM: △AMN cân
c)CM: MN//BC
d)CM: \(AH^2+BM^2=AN^2+BH^2\)
Ai bít câu d thì giúp mình với mình cần gấp!!!!!!!!!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xet tg AMH vuong tai M co; AH2 = AM2 + HM2
tg BMH co; BM2 = BH2-HN2
cong 2 pt ban toi da nhan ra chua ban co thay AM=AN ; HM = HN thay vao ban se thay phep dieu ky
ma toi mang den cho ban la dpcm
Ta có: tam giác ANH vuông tại N
=>AN2+NH2=AH2 (1)
Ta có: Tam giác BMH=tam giác CNH (c.h-g.n)
=>MH=NH
=>MH2=NH2 (2)
Ta có: tam giác BMH vuông tại M
=>MB2+MH2=BH2
=>MH2=BH2-BM2 (3)
Từ (1);(2);(3)
=>AN2+(BH2-BM2)=AH2
=>AN2+BH2=AH2+BM2 (đpcm)
Hình tự vẽ nhé!
a/Xét tam giác AHB và tam giác AHC có:
AH chung
Góc AHB=góc AHC=90o
AB=AC(tam giác ABC cân tại A)
=> tam giác AHB= tam giác AHC(ch-cgv)
b/ Xét tam giác HMB và tam giác HNC có:
BH=HC( cạnh tương ứng của tam giác AHB=tam giác AHC)
Góc B=góc C(tam giác ABC cân tại A)
Góc HMB=góc HNC=90o
=> tam giác HMB=tam giác HNC(ch-gn)
=> MB=NC
Mà AM=AB-MB
AN=AC-NC
Nên AM=AN(AB=AC;MB=NC)
Vậy tam giác AMN cân tại A
a, Xét tg AHB và tg AHC, có:
AB=AC(tg cân)
góc AHB= góc AHC(=90o)
góc B= góc C(tg cân)
=> tg AHB= tg AHC(ch-gn)
b,Xét tg BMH và tg CNH, có:
góc B= góc C(tg cân)
BH=CH(2 cạnh tương ứng)
góc BMH= góc CNH(=90o)
=> tg BMH= tg CNH(ch-gn)
Xét tg AMH và tg ANH, có:
AH chung.
góc AMH= góc ANH(=90o)
MH=HN(2 cạnh tương ứng)
=> tg AMH= tg ANH(ch- cgv)
=> AM=AN(2 cạnh tương ứng)
=> tg AMN là tg cân.
c, Ta có:tg AMN cân tại A, tg ABC cân tại A nên, suy ra:
Các góc ở đáy bằng nhau: góc B= góc C= góc AMN= góc ANM.
Mà góc AMN và góc B ở vị trí đồng vị nên, suy ra:
MN // BC.
a, Xét tam giác AHB và tam giác AHC có
AH _ chung
AB = AC
Vậy tam giác AHB~ tam giác AHC (ch-cgv)
Ta có tam giác ABC cân tại A, có AH là đường cao
đồng thười là đường pg
b, Xét tam giác AMH và tam giác NAH có
HA _ chung
^MAH = ^NAH
Vậy tam giác AMH = tam giác NAH (ch-gn)
=> AM = AN ( 2 cạnh tương ứng )
c, Ta có AM/AB = AN/AC => MN // BC
d, Ta có \(AH^2+BM^2=AN^2+BH^2\)
Xét tam giác BMH vuông tại M \(MB^2=BH^2-MH^2\)
Thay vào ta được \(AH^2+BH^2-MH^2=AN^2+BH^2\Leftrightarrow AH^2-MH^2=AN^2\)
Lại có AM = AN (cmt)
\(AM^2=AH^2-MH^2\)( luôn đúng trong tam giác AMH vuông tại M)
Vậy ta có đpcm