tìm đa thức p(x) biết p(x) khi chia cho x-2 dư 2;chia cho x+2 dư -2; chia cho x^2-1 được thương là x và còn dư
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi thương của P(x) khi chi cho (x-2), (x-3) lần lượt là A(x),B(x) =>P(x)=(x-2).A(x)+5 (1) và P(x)=(x-3).B(x)=7 (2) Gọi thương của P(x) khi chia cho (x-2).(x-3) là C(x) và dư là R(x) Ta có : (x-2)(x-3) có bậc là 2 => R(x) có bậc là 1 => R(x) có dạng ax+b (a,b là số nguyên ) =>R(x)=(x-2)(x-3).C(x)+ax+b (3) thay x=2 vào (1) và (3) ta có: P(x)=2a+b=5 thay x=3 vào (2) và (3) ta có: P(x)=3a+b=7 => a=2,b=1 =>R(x)=2x+1 Vậy dư của P(x) khi chia cho (x-2)(x-3) là 2x+1
Lời giải:
Gọi đa thức dư khi lấy $f(x)$ chia cho $x^2+x-6$ là $ax+b$ với $a,b\in\mathbb{R}$, $Q(x)$ là đa thức thương.
Theo bài ra ta có:
$f(2)=6067$
$f(-3)=-4043$
$f(x)=(x^2+x-6)Q(x)+ax+b=(x-2)(x+3)Q(x)+ax+b$
Cho $x=2$ thì:
$f(2)=0.Q(2)+2a+b=2a+b$
$\Leftrightarrow 6067=2a+b(1)$
Cho $x=-3$ thì:
$f(-3)=0.Q(-3)-3a+b=-3a+b$
$\Leftrightarrow -4043=-3a+b(2)$
Từ $(1); (2)\Rightarrow a=2022; b=2023$
Vậy đa thức dư là $2022x+2023$
Ta có:
\(P\left(x\right)=\left(x-1\right)P\left(x\right)+3\)(1)
\(P\left(x\right)=\left(x-2\right)Q\left(x\right)+4\)(2)
\(P\left(x\right)=\left(x-1\right)\left(x-2\right)H\left(x\right)+ax+b\)(3) \(\left[x^2-3x+2=\left(x-1\right)\left(x+2\right)\right]\)
(đa thức dư là ax + b vì đa thức bị chia có bậc 2 thì đa thức đư có bậc 1)
Thay x = 1 vào (1), được P(1) = 3
Thay x = 1 vào (3), được \(a+b=3\) (4)
Thay x = 2 vào (2), có P(2) = 4
Thay x = 2 vào (2), có 2a + b = 4 (5)
Từ (4) và (5), ta tính được a = 1, b = 2
Vậy đa thức dư khi chia P(x) cho \(x^2-3x+2\)là \(ax+b=x+2\)