ĐỀ BÀI: Cho x, y là các số dương thỏa mãn x+y=1. Tìm giá trị nhỏ nhất của biểu thức P= (1- 1/x²) (1- 1/y²)
CHO MIK HỎI SAO LẠI +16x+16y chứ ko phải là số khác
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
P = 1/16x + 1/4y + 1/z = (1/16x + 4/16y + 16/16z)
áp dụng BĐT Bunhiacopski ta có
(1/16x + 4/16y + 16/16z)*(16x + 16y + 16z) >= (1 + 2 + 4)^2 = 49
=> P.16 >= 49 hay P >= 49/16
dấu = xảy ra khi
1/(16x)^2 = 1/64y^2 = 1/16z^2 và x + y + z = 1
<> 1/16x = 1/8y = 1/4z và x + y + z = 1
<> 4x = 2y = z và x + y + z = 1
<> x = 1/7 và y = 2/7 và z = 4/7
\(B=\frac{x^3}{y+1}+\frac{y^3}{1+x}=\frac{\left(x^4+y^4\right)+\left(x^3+y^3\right)}{xy+x+y+1}\)
\(=\frac{\left(x^4+y^4\right)+\left(x+y\right)\left(x^2+y^2-xy\right)}{x+y+2}=\frac{\left(x^4+y^4\right)+\left(x+y\right)\left(x^2+y^2-1\right)}{x+y+2}\)
Áp dụng BĐT cô si với các số dương x2 ; y2 ; x4 ; y4 ta được :
\(B\ge\frac{2x^2y^2+\left(x+y\right)\left(2xy-1\right)}{x+y+2}=\frac{2+\left(x+y\right)}{x+y+2}=1\)
Dấu ''='' xảy ra khi \(\Leftrightarrow x=y=1\)
\(K=\left(4xy+\dfrac{1}{4xy}\right)+\left(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\right)+\dfrac{5}{4xy}\)
\(K\ge2\sqrt{\dfrac{4xy}{4xy}}+\dfrac{4}{x^2+y^2+2xy}+\dfrac{5}{\left(x+y\right)^2}\ge2+4+5=11\)
\(K_{min}=11\) khi \(x=y=\dfrac{1}{2}\)
TK: Tìm Min (x^4 + 1) (y^4 + 1) với x + y = căn10 ; x , y > 0 - Thanh Truc
Vì nguyên tắc cân bằng điểm rơi của BĐT:
\(a+b+c\ge3\sqrt[3]{abc}\) với dấu "=" xảy ra khi \(a=b=c\)
Dự đoán dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)
Do đó, bạn cần 1 hằng số k sao cho:
\(\dfrac{2}{xy}+kx+ky\ge3\sqrt[3]{...}\)
Với \(\dfrac{2}{xy}=kx=ky\) khi \(x=y=\dfrac{1}{2}\)
Thay vào: \(\dfrac{2}{\dfrac{1}{2}.\dfrac{1}{2}}=k.\dfrac{1}{2}=k.\dfrac{1}{2}\Rightarrow k=16\)
Đó là lý do xuất hiện số 16
P/s: bài làm này rắc rối một cách rất không cần thiết
Sau khi đến đoạn: \(P=1+\dfrac{2}{xy}\)
Ta làm tiếp như sau:
Từ giả thiết: \(1=x+y\ge2\sqrt{xy}\Rightarrow\sqrt{xy}\le\dfrac{1}{2}\Rightarrow xy\le\dfrac{1}{4}\)
\(\Rightarrow\dfrac{1}{xy}\ge4\)
\(\Rightarrow P=1+2.\dfrac{1}{xy}\ge1+2.4=9\)
Như vậy đơn giản hơn nhiều :)