K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2021

a, Xét tứ giác ABDC có: AM=MD (gt) ; BM=MC (gt)

=> ABDC là hình bình hành

b,Để ABDC là hình thoi => AB = AC => \(\Delta ABC\)cân

c, I đâu ra vậy bạn?

22 tháng 12 2016

a)    do am là đường trung tuyến

=>m là trung điểm bc

Mà m là trung điểm của ad (do d là điểm đối xứng với a qua m)

=>ad giao với ad tại m là trung điểm mỗi đường

=>abcd là hbh

b)   Giả sử abcd là hcn

=>góc a=90 độ

=>tam giác abc vuông tại a

Vậy tam giác abc là tam giác vuông tại a thìabcd là hcn

c) gọi mn giao ac tại e

=>e là tđ của ac

e là tđ của mn

=>anmc là hbh

ta có am=mc(vì am là đường trung tuyến trong tam giác vuông)

=>amnc là hình thoi

cm: abmn là hbh

=>ab=mn 

diện tích amnc=ac*mn/2=4*3/2=6

    

25 tháng 11 2019

d. Chứng minh đc ABDC là hình chữ nhật.

=> \(S_{ABDC}=AB.AC\)

Để \(S_{ABDC}=AB^2\)

khi đó AC = AB

=> Tam giác ABC có thêm điều kiện: cân tại A

25 tháng 11 2019

B A C D P N M

a) Xét tứ giác BMCP có : 

N là trung điểm của MP

N là trung điểm của BC

=> BMCP là hình bình hành ( dấu hiệu )

b) Xét tam giác ABC có :

M là trung điểm của AB

N là trung điểm của BC

=> Mn là đường trung bình của tam giác ABC ( định nghĩa )

=> MN // AC hay MP // AC ; MN = 1/2 AC ( tính chất )

Vì MN = MP

=> MN + MP = 1/2 AC + 1/2 AC = AC = MP

Xét tứ giác AMPC có : AC // MP ; AC = MP

=> AMPC là hình bình hành ( dấu hiệu )

Hình bình hành AMPC có :  góc ABC = 90o

=> AMPC là hình chữ nhật ( dấu hiệu )

22 tháng 12 2016

Giải

a, Do AM là đường trung tuyến ứng với cạnh huyền của ΔABC vuông tại A, nên 
AM = BM = CM = BC/2 = 10/2 = 5 (cm) 

b, Do D là điểm đối xứng của A qua M nên AD = 2AM = 2BM = BC. 
Do tứ giác ABDC có hai đường chéo AD và BC bằng nhau, cắt nhau tại trung điểm mỗi đường nên ABDC là hình chữ nhật ( dấu hiệu nhận biết hình chữ nhật ) 

c, Hình chữ nhật ABDC là hình vuông ⇔ ∡BMA = 90º 
⇔ AM ⊥ BC 
ΔABC có AM vừa là đường cao, vừa là đường trung tuyến nên ΔABC là tam giác cân tại A, kết hợp với ∡A = 90º ⇒ ΔABC vuông cân tại A. 

Vậy với ΔABC vuông cân tại A thì tứ giác ABDC là hình vuông. 
 

25 tháng 12 2016

mơn bạn

11 tháng 7 2023

a) Xét ∆CMA và ∆BMD:

Góc CMA= góc BMD (đối đỉnh)

MA=MD (gt)

MC=MB (M là trung điểm BC)

=> ∆CMA=∆BMD(c.g.c)

=> góc CAM = góc BDM và CA=DB

Mà 2 góc CAM và góc BDM nằm ở vị trí so lo trong nên CA//DB

=> CABD là hình bình hành

Lại có góc CAB = 90 độ (gt)

=> ACDB là hình chữ nhật

b) Vì E là điểm đối xứng của C qua A nên EAB=90độ=DBA

Mà 2 góc này ở bị trí so le trong nên AE//DB

Lại có AE=BD(=CA)

=> AEBD là hình bình hành

26 tháng 12 2021

a: Xét tứ giác AMCK có

I là trung điểm của AC

I là trung điểm của MK

Do đó: AMCK là hình bình hành

mà \(\widehat{AMC}=90^0\)

nên AMCK là hình chữ nhật

12 tháng 12 2023

loading...  loading...  loading...  loading...  

12 tháng 12 2023

loading...  a) Tứ giác ABDC có:

M là trung điểm của BC (gt)

M là trung điểm của AD (gt)

⇒ ABDC là hình bình hành

Mà ∠BAC = 90⁰ (∆ABC vuông tại A)

⇒ ABDC là hình chữ nhật

b) Do ABDC là hình chữ nhật (cmt)

⇒ CD = AB (1)

Do B là trung điểm của AE (gt)

⇒ BE = AB = AE : 2 (2)

Từ (1) và (2) ⇒ CD = BE

Do ABDC là hình chữ nhật (cmt)

⇒ CD // AB

⇒ CD // BE

Tứ giác BEDC có:

CD // BE (cmt)

CD = BE (cmt)

⇒ BEDC là hình bình hành

c) Do ABDC là hình chữ nhật (cmt)

⇒ AC // BD

Do đó AC, BD, EK đồng quy là vô lý

Em xem lại đề nhé!