K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2017

A B C D N 1 2 M

Trên cạnh AB lấy lấy điểm N sao cho AN=AC.

=> \(\Delta\)AMC=\(\Delta\)AMN (c.g.c) => MC=MN (2 cạnh tương ứng)

Ta có: AB-AC=AB-AN=NB (Thay AN=AC)

Xét \(\Delta\)MNB: NB>MB-MN (Bất đẳng thức tam giác) , MN=MC => NB>MB-MC

Mà NB=AB-AC => AB-AC>MB-MC hay MB-MC<AB-AC (đpcm)

10 tháng 3 2018

Hok tốt

29 tháng 6 2021

Trên cạnh AB lấy điểm N sao cho AN = AC.

\(\Delta AMC=\Delta AMN\)(c.g.c), suy ra \(AC=AN,MC=MN\)

Áp dụng BĐT tam giác cho \(\Delta BMN\), ta có:

 \(AB-AC=AB-AN=BN>MB-MN=MB-MC\)

19 tháng 11 2023

a:

AB+BF=AF

AE+EC=AC

mà AB=AE và AC=AF

nên BF=EC

Xét ΔAEF và ΔABC có

AE=AB

\(\widehat{EAF}\) chung

AF=AC

Do đó: ΔAEF=ΔABC

=>\(\widehat{AEF}=\widehat{ABC}\) và \(\widehat{AFE}=\widehat{ACB}\)

\(\widehat{ABD}+\widehat{FBD}=180^0\)(hai góc kề bù)

\(\widehat{AED}+\widehat{DEC}=180^0\)(hai góc kề bù)

mà \(\widehat{ABD}=\widehat{AED}\)

nên \(\widehat{FBD}=\widehat{DEC}\)

Xét ΔDBF và ΔDEC có

\(\widehat{DBF}=\widehat{DEC}\)

BF=EC

\(\widehat{DFB}=\widehat{DCE}\)

Do đó: ΔDBF=ΔDEC

=>DB=DE

Xét ΔABD và ΔAED có

AB=AE

BD=ED

AD chung

Do đó: ΔABD=ΔAED

=>\(\widehat{BAD}=\widehat{EAD}\)

=>AD là phân giác của \(\widehat{BAC}\)

b: Xét ΔABM và ΔAEM có

AB=AE

\(\widehat{BAM}=\widehat{EAM}\)

AM chung

Do đó: ΔABM=ΔAEM

=>MB=ME

AC-AB=EC

mà EC>MC-ME

và MC=MF

nên AC-AB>MC-ME=MC-MB(ĐPCM)

9 tháng 5 2018

a) Bạn xét 2 tam giác ABM và tam giác ADM ( c-g-c )

Suy ra BM = DM ( 2 cạnh tương ứng )

b) Xét 2 tam giác AKD và tam giác ACB ( g-c-g )

Suy ra AK = AC ( 2 cạnh tương ứng )

Suy ra tan giác AKC cân tại A 

Mấy cái tam giác bằng nhau bạn tự chứng minh

9 tháng 5 2018

Chưa có câu c kìa

Vs ng` ta đăng bài vì ko lm đc sao m nói tự chứng minh như đúng rồi ý , z nói lm cái j???

4 tháng 4 2016

trong tam giác ABM, ta có bất đẳng thức

MB<AB+AM

trong tam giác ACM, ta co bất đẳng thức

MC<AC+AM

từ 2 điều trên suy ra MB-MC<(AB+AM)-(AC+AM)

suy ra MB-MC<AB+AM-AC-AM

suy ra MB-MC<AB-AC(đfcm)

26 tháng 4 2018

Bn hok tốt nha!~^^