K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2021

Ta có \(x+y\le1\Leftrightarrow1-x\ge y>0\Leftrightarrow0< x< 1\)

Giả sử \(x^2-\dfrac{3}{4x}-\dfrac{x}{y}\le-\dfrac{9}{4}\)

\(\Leftrightarrow4x^2+9\le\dfrac{3}{x}+\dfrac{4x}{y}\\ \Leftrightarrow\dfrac{4x}{1-x}+\dfrac{3}{x}\ge4x^2+9\\ \Leftrightarrow\dfrac{4x^2+3\left(1-x\right)-x\left(4x^2+9\right)\left(1-x\right)}{x\left(1-x\right)}\ge0\\ \Leftrightarrow\dfrac{4x^4-4x^3+13x^2-12x+3}{x\left(1-x\right)}\ge0\\ \Leftrightarrow\dfrac{\left(x^2+3\right)\left(2x-1\right)^2}{x\left(1-x\right)}\ge0\)

Vì \(x>0;1-x>0\) nên BĐT trên luôn đúng

Vậy ta được đpcm

Dấu \("="\Leftrightarrow x=y=\dfrac{1}{2}\)

20 tháng 5 2022

để x ko lá số dương cũng ko là số âm khi:

\(\dfrac{2a+5}{2}=0\\ 2a+5=0\\ 2a=-5\\ a=-\dfrac{5}{2}\)

vậy...

20 tháng 5 2022

có 3 trường hợp tất cả mà :v

a: x>0

=>2a+5<0

=>a<-5/2

b: x<0

=>2a+5>0

=>a>-5/2

c: x=0

=>2a+5=0

=>a=-5/2

22 tháng 6 2023

mik thank nhayeu

AH
Akai Haruma
Giáo viên
31 tháng 7 2023

Lời giải:

a. $x$ là số dương khi mà $x=\frac{3a-2}{4}>0$

$\Rightarrow 3a-2>0$

$\Rightarrow a> \frac{2}{3}$

b. 

$x$ là số âmkhi mà $x=\frac{3a-2}{4}<0$

$\Rightarrow 3a-2<0$

$\Rightarrow a< \frac{2}{3}$

c. $x$ không âm không dương

Tức là $x=\frac{3a-2}{4}=0$

Hay $a=\frac{2}{3}$

31 tháng 7 2023

a) Để \(X=\dfrac{3a-2}{4}\) là số dương

\(\Rightarrow3a-2\) lớn hơn 0 ( 4 là số dương)

\(\Rightarrow a\) lớn hơn \(\dfrac{2}{3}\)

b) Để \(X=\dfrac{3a-2}{4}\) là số âm

\(\Rightarrow3a-2\) nhỏ hơn 0 (vì 4 là số dương)

\(\Rightarrow a\) nhỏ hơn \(\dfrac{2}{3}\)

c) Để X không dương không âm

\(3a-2=0\)

\(\Rightarrow a=\dfrac{2}{3}\)