\(\dfrac{2\cdot6^9-2^5\cdot18^4}{2^2\cdot6^8}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
H=\(\frac{1\cdot2\cdot3+2\cdot4\cdot6+3\cdot6\cdot9+5\cdot10\cdot15}{1\cdot3\cdot6+2\cdot6\cdot12+3\cdot9\cdot18+5\cdot15\cdot30}=\frac{1.2.3+2^3.\left(1.2.3\right)+3^3.\left(1.2.3\right)+5^3.\left(1.2.3\right)}{1.3.6+2^3.\left(1.3.6\right)+3^3.\left(1.3.6\right)+5^3.\left(1.3.6\right)}=\frac{1.2.3.\left(1+2^3+3^3+5^3\right)}{1.3.6.\left(1+2^3+3^3+5^3\right)}=\frac{2}{6}=\frac{1}{3}\)
A=1.5.(3.2)+2.10.(6.2)+3.15.(9.2)+4.20.(12.2)+5.25.(15.2)
1.3.5+2.6.10+3.9.15+4.12.20+5.15.25
A=1.5.3+2.10.6+3.15.9+4.20.12+5.25.15(2.2.2.2.2)
1.3.5+2.6.10+3.9.15+4.12.20+5.15.25
A=2.2.2.2.2
A=32
\(\frac{1\cdot3\cdot5\cdot2+2\cdot10\cdot6\cdot2+3\cdot15\cdot9\cdot2+4\cdot20\cdot12\cdot2+5\cdot25\cdot15\cdot2}{1\cdot3\cdot5+2\cdot10\cdot6+3\cdot15\cdot9+4\cdot20\cdot12+5\cdot25\cdot15 }\)
\(2\cdot2\cdot2\cdot2\cdot2=2^5\)
\(=32\)
139\(\frac{5}{7}:\frac{2}{3}\)-\(138\frac{2}{7}:\sqrt{\frac{4}{9}}\)
=139\(\frac{5}{7}:\frac{2}{3}\)-\(138\frac{2}{7}:\frac{2}{3}\)
=(139\(\frac{5}{7}\)-\(138\frac{2}{7}\)):\(\frac{2}{3}\) =\(1\frac{3}{7}\):\(\frac{2}{3}\) =\(\frac{9}{7}.\frac{3}{2}\) =\(\frac{27}{14}\)=\(\frac{2.2^9.3^9-2^5.2^4.3^8}{2.2^8.3^8}\)
=\(\frac{2^{10}.3^9-2^9.3^8}{2^9.3^8}\)
=\(\frac{2^9.3^8.\left(2.3-1\right)}{2^9.3^8}\)
=\(6-1\)
=5
\(A=\frac{8056}{2012.16-1982}\)= \(\frac{2014.4}{2012.15+2012-1982}\)=\(\frac{2014.4}{2012.15+30}\)=\(\frac{2014.4}{2012.15+2.15}\)=\(\frac{2014.4}{15.\left(2012+2\right)}=\frac{2014.4}{15.2014}=\frac{4}{15}\)
B = \(\frac{1.2.6+2.4.12+4.8.24+7.14.42}{1.6.9+2.12.18+4.24.36+7.42.63}\)
= \(\frac{1.2.3.2+2.2.2.12+4.4.2.24+7.7.2.42}{1.2.3.9+2.12.2.9+4.24.4.9+7.42.7.9}\)
= \(\frac{2\left(1.2.3+2.2.12+4.4.24+7.7.42\right)}{9\left(1.2.3+2.2.12+4.4.24+7.7.42\right)}\)
= \(\frac{2}{9}\)
Ta có: \(\frac{4}{15}=\frac{4.3}{15.3}=\frac{12}{45};\frac{2}{9}=\frac{2.5}{9.5}=\frac{10}{45}\)
Vì \(\frac{12}{45}>\frac{10}{45}\Rightarrow\frac{4}{15}>\frac{2}{9}\Rightarrow A>B\)
Vậy A > B
\(A=\dfrac{8056}{2012.16-1982}\)
\(A=\dfrac{8056}{32192-1982}\)
\(A=\dfrac{8056}{30210}=\dfrac{12}{45}\)
\(B=\dfrac{1.2.6+2.4.12+4.8.24+7.14.42}{1.6.9+2.12.18+4.24.36+7.42.63}\)
\(B=\dfrac{12+96+768+4116}{54+432+3456+18522}\)
\(B=\dfrac{4992}{22464}=\dfrac{10}{45}\)
Vậy: \(\dfrac{12}{45}>\dfrac{10}{45}\Rightarrow A>B\)
\(B=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{3.4.5}+\dfrac{2}{4.5.6}+\dfrac{2}{5.6.7}+\dfrac{2}{6.7.8}\)
\(=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{6.7}-\dfrac{1}{7.8}\)
\(=\dfrac{1}{1.2}-\dfrac{1}{7.8}\)
\(=\dfrac{1}{2}-\dfrac{1}{56}=\dfrac{27}{56}\)
Ta có: \(\dfrac{2\cdot6^9-2^5\cdot18^4}{2^2\cdot6^8}\)
\(=\dfrac{2\cdot2^9\cdot3^9-2^5\cdot2^4\cdot9^4}{2^2\cdot2^8\cdot3^8}\)
\(=\dfrac{2^{10}\cdot3^9-2^9\cdot3^8}{2^{10}\cdot3^8}\)
\(=\dfrac{2^9\cdot3^8\cdot\left(2\cdot3-1\right)}{2^{10}\cdot3^8}\)
\(=\dfrac{6-1}{2}=\dfrac{5}{2}\)