K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2016

ta có: 10^n+18n-1=100...0(n số 0)-1+18n=9...9(n c/s 0)+18n

ta thấy : 99..9 và 18n đều chia hết cho 3 và 9

mà 27=3.9

=>99...9+18n chia hết cho 27

hay 10^n+18n-1 chia hết cho 27

6 tháng 2 2016

\(10^n+18n-1=10^n-1-9n+27n\)

=99...9(n số 9)-9n+27=9.(11...1 -n)+27n

                                      n số 1)

vì 11..1(n số 1 ) có tổng các chữ số=n =>(11...1-n) chia hết cho 3

                                                           n số 1

=>9.(11...1-n) chia hết cho 27

        n số 1

=>đpcm

19 tháng 3 2021

ctr nó chia hết cho 3 và 9

5 tháng 2 2018

Chứng minh rằng:10n + 18n - 1 chia hết cho 27.

Ta có: 10n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9) 
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A 
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1). 
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1). 
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10n + 18n - 1 chia hết cho 27 (đpcm)

9 tháng 6 2016

B = 10n + 18n - 1

B = 10n - 1 - 9n + 27n

B = 999....9 - 9n + 27n

  ( n chữ số 9)

B = 9 x ( 111...1 - n) + 27n

          ( n chữ số 1)

Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 3 nên 111...1 - n chia hết cho 3

                                                                                                         ( n chữ số 1)

=> 9 x ( 111...1 - n) chia hết cho 27. Mà 27n chia hết cho 27 => B chia hết cho 27

Chứng tỏ B chia hết cho 27

9 tháng 6 2016

Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9) 
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A 
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1). 
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1). 
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)

17 tháng 3 2017

Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9)
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)

3 tháng 3 2016

đề bài sai rồi nếu n=2 thì sao

CHTT nha bn

10 tháng 1 2016

a)10^n+18n-1=10^n-1+18n=999....99(n chu so 9)+18n

  =9.(111...11(n chu so 9)+2n)

  Xet 111...11(n chu so 9)+2n=111..11-n+3n

  De thay tong cac chu so cua 111....11(n chu so 1) la n

 =>111...11-n chia het cho 3

 =>111...11-n+3n chia het cho 3

 =>10^n+18n-1 chia het cho 27

18 tháng 12 2017

b)  Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9) 
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A 
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1). 
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1). 
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)

c)  10^n+72n-1 
=10^n-1+72n 
=(10-1)[10^(n-1)+10^(n-2)+...+10+1]+72n 
=9[10^(n-1)+10^(n-2)+...+10+1]-9n+81n 
=9[10^(n-1)+10^(n-2)+...+10+1-n]+81n 
=9[(10^(n-1)-1)+(10^(n-2)-1)+...+(10-1)... + 81n 
ta có 10^k - 1 = (10-1)[10^(k-1)+...+10+1] chia hết cho 9 =>9[(10^(n-1)-1) +(10^(n-2)-1) +... +(10-1) +(1-1)] chia hết cho 81 =>9[(10^(n-1)-1)+(10^(n-2)-1)+...+(10-1)... + 81n chia hết cho 81 =>đpcm.

31 tháng 7 2016

Dùng quy nạp nhé!!! 
10ⁿ+18n-1 chia hết cho 27 (*) 
Với n=0 thì 10ⁿ+18n-1=1+0-1=0 chia hết cho 27 
Giả sử mệnh đề (*) đúng với n=k(k thuộc N,k≥0) 
Tức là 10^k+18k-1=27t 
Xét 10^(k+1)+18(k+1)-1 
=10^k+18k-1+9.10^k+18 
=27t+9(10^k-1)+27(1) 
Mặt khác 10^k-1 chia hết cho 10-1=9 
=>10^k-1 chia hết cho 3 
=>9(10^k-1) chia hết cho 27(2) 
từ (1),(2)=> mệnh đề (*) đúng với n=k+1 
Vậy 10ⁿ+18n-1 chia hết cho 27 với mọi n thuộc N 

5 tháng 8 2016

10ⁿ+18n-1 chia hết cho 27 (*) 
Với n=0 thì 10ⁿ+18n-1=1+0-1=0 chia hết cho 27 
Giả sử mệnh đề (*) đúng với n=k(k thuộc N,k≥0) 
Tức là 10^k+18k-1=27t 
Xét 10^(k+1)+18(k+1)-1 
=10^k+18k-1+9.10^k+18 
=27t+9(10^k-1)+27(1) 
Mặt khác 10^k-1 chia hết cho 10-1=9 
=>10^k-1 chia hết cho 3 
=>9(10^k-1) chia hết cho 27(2) 
từ (1),(2)=> mệnh đề (*) đúng với n=k+1 
Vậy 10ⁿ+18n-1 chia hết cho 27 với mọi n thuộc N 

26 tháng 6 2016

10n +18n -1 = 9999...9 (n chũ số 9) +1-1+27n-9n

=(9999...9-9n) +27n

= 9.(1111...111-n) +27n

Mà ta có 111...111-n với 111...111 có n chữ số 1 luôn chia hết cho 9

=> 9(111...1-n) chia hết cho 9.9=81 mà 81 chia hết cho 27 -> 9(111...111-n) +27n chia hết choa 27

26 tháng 6 2016

Giả sử: 10n + 18n - 1 chia hết cho 27

=> 10n - 1 + 18n chia hết cho 27

=> 999..9 (n chữ số 9) + 18n chia hết cho 27

=> 9(1111...1+2n) chia hết cho 27

=> 111..1 + 2n chia hết cho 3

Ta có: Tổng các chữ số của 1111..11 (n số 1) bằng n và 2n có tổng các chữ số là số dư khi 2n chia 9

Gọi số dư đó là k thì 2n = 3x + 2k (x thuộc N)

111....1 = 3y + k (x thuộc n)

=> 2n + 1111...11 = 3(x+y) + 3k = 3(x+y+k)

=> 2n + 111...111 chia hết cho 3

=> 10n + 18n - 9 chia hết cho 27