K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2016

BON OLM LÀM ĂN NGU

20 tháng 2 2016

Vì đa thức (x−a)(x−10)+1(x−a)(x−10)+1 có thể phân tích thành tích của hai đa thức bậc nhất có hệ số nguyên nên ta chỉ có hai cách phân tích duy nhất là: 

1)(x−a)(x−10)=(x+b)(x+c)2)(x−a)(x−10)=(−x+b)(−x+c)1)(x−a)(x−10)=(x+b)(x+c)2)(x−a)(x−10)=(−x+b)(−x+c) với b,c∈Zb,c∈Z

Ta sẽ tìm aa trong trường hợp 1)1), trường hợp còn lại làm tương tự

(x−a)(x−10)+1=(x−b)(x−c)⇔x2−(a+10)x+10a+1=x2+(b+c)x+bc(x−a)(x−10)+1=(x−b)(x−c)⇔x2−(a+10)x+10a+1=x2+(b+c)x+bc

Đồng nhất, ta được {b+c=−(a+10)bc=10a+1{b+c=−(a+10)bc=10a+1

⇒b,c⇒b,c là hai nghiệm nguyên của PT X2+(a+10)X+10a+1=0X2+(a+10)X+10a+1=0 với aa nguyên

⇒Δ=(a+10)2−40a−4=m2(m∈N)⇔(a−10)2−4=m2⇔(a−m−10)(a+m−10)=4⇒Δ=(a+10)2−40a−4=m2(m∈N)⇔(a−10)2−4=m2⇔(a−m−10)(a+m−10)=4

Vì a−m−10a−m−10 và a+m−10a+m−10 cùng tính chẵn lẻ và a+m−10≥a−m−10a+m−10≥a−m−10 nên:

{a+m−10=2a−m−10=2⇒a=12{a+m−10=2a−m−10=2⇒a=12

Hoặc : 

{a+m−10=−2a−m−10=−2⇒a=8

20 tháng 2 2016

\(x^2-\left(a+10\right)x+10a+1=0\)

\(\Delta=a^2+20a+100-40a-4=\left(a-10\right)^2-4=\left(a-6\right)\left(a-14\right)\)

a thuộc Z => \(\Delta\) là số nguyên ; để TM yêu cầu => \(\Delta\) là số chính phương 

=> a =6 ; a =14

18 tháng 8 2023

Đặt \(f\left(x\right)=\left(x-a\right)\left(x-10\right)+1=x^2-\left(a+10\right)x+10a+1\).

Theo đề bài, ta đặt \(f\left(x\right)=\left(x-m\right)\left(x-n\right)\) với \(m,n\inℤ\)

\(f\left(x\right)=x^2-\left(m+n\right)x+mn\)

Khi đó, ta thu được hệ pt:

\(\left\{{}\begin{matrix}m+n=a+10\\mn=10a+1\end{matrix}\right.\) 

Ta thấy nếu \(\left(a+10\right)^2-4\left(10a+1\right)< 0\) 

\(\Leftrightarrow\left(a-12\right)\left(a-8\right)< 0\)

\(\Leftrightarrow8< a< 12\) 

thì sẽ không tồn tại \(m,n\) thỏa mãn. Vậy \(\left[{}\begin{matrix}a\le8\\a\ge12\end{matrix}\right.\)

 Khi đó \(m,n\) là nghiệm nguyên của pt \(X^2-\left(a+10\right)X+10a+1=0\)         (*)

 Pt này có \(\Delta=\left(a+10\right)^2-4\left(10a+1\right)\) \(=\left(a-10\right)^2-4\) mà (*) lại có 2 nghiệm nguyên nên \(\left(a-10\right)^2-4\) phải là số chính phương.

 Đặt \(\left(a-10\right)^2-4=k^2\) (với \(k\inℕ\))

\(\Leftrightarrow\left(a-10\right)^2-k^2=4\)

\(\Leftrightarrow\left(a-10-k\right)\left(a-10+k\right)=4\)

Vì \(a-10-k\le a-10+k\) nên ta xét các TH sau:

TH1: \(\left\{{}\begin{matrix}a-10+k=2\\a-10-k=2\end{matrix}\right.\), khi đó \(k=0\) và \(a=12\)

\(\Rightarrow f\left(x\right)=x^2-22x+121=\left(x-11\right)^2\) thỏa ycbt.

TH2: \(\left\{{}\begin{matrix}a-10-k=1\\a-10+k=4\end{matrix}\right.\Rightarrow2k=3\), vô lí.

TH3: \(\left\{{}\begin{matrix}a-10-k=-2\\a-10+k=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}k=0\\a=8\end{matrix}\right.\)

Thử lại, ta có \(f\left(x\right)=x^2-18x+81=\left(x-9\right)^2\) thỏa ycbt.

TH4; \(\left\{{}\begin{matrix}a-10-k=-4\\a-10+k=-1\end{matrix}\right.\Rightarrow2k=3\), vô lí.

Vậy \(a\in\left\{8;12\right\}\) thỏa ycbt.

 

 

6 tháng 2 2021

Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học trực tuyến OLM

9 tháng 2 2021

Lỗi kìa