Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi a=ƯC(m,mn+8)
Ta có: m chia hết cho a(m lẻ => a lẻ)
=> mn chia hết cho a.
Lạ có: mn+8 chia hết cho a.
=> mn+8-mn chia hết cho a
=> 8 chia hết cho a.
=> a\(\in\)Ư(8)={1,2,4,8}
Vì a lẻ.
=> a=1
=> ƯC(m,mn+8)=1
=> m và mn+8 là 2 số nguyên tố cùng nhau.
Gọi \(d=ƯCLN\left(20n+3;30n+4\right)\)
Ta có: \(20n+3\) chia hết cho \(d\) nên \(3\left(20n+3\right)\) chia hết cho \(d\)
và \(30n+4\)chia hết cho \(d\) nên \(2\left(30n+4\right)\) chia hết cho \(d\)
Do đó: \(\left[3\left(20n+3\right)-2\left(30n+4\right)\right]\) chia hết cho \(d\)
\(\Leftrightarrow\left(60n+9-60n-8\right)\) chia hết cho \(d\)
\(\Leftrightarrow1\) chia hết cho \(d\) \(\Rightarrow d=1\)
Vậy, \(20n+3\) và \(30n+4\) nguyên tố cùng nhau với \(n\in N\)
K MIK NHA BN !!!!!!
B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1
* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số
* xét p nguyên tố khác 3 => 8p không chia hết cho 3
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3
=> (8p-1)(8p+1) chia hết cho 3
Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số
B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1)
* Xét k = 1
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2)
* Xét k lẻ mà k > 1
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn
=> k + 1 là hợp số
=> Dãy số không có nhiều hơn 2 số nguyên tố (3)
* Xét k chẵn , khi đó k >= 2
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn
=> k + 2 và k + 10 là hợp số
=> Dãy số không có nhiều hơn 1 số nguyên tố (4)
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất
B3:Số 36=(2^2).(3^2)
Số này có 9 ước là:1;2;3;4;6;9;12;18;36
Số tự nhiên nhỏ nhất có 6 ước là số 12.
Cho tập hợp ước của 12 là B.
B={1;2;3;4;6;12}
K MIK NHA BN !!!!!!
Với n = 1 thì n(n+1) = 2 là số nguyên tố, với n ≥2 thì n(n+1) là hợp số.
Với n = 1 thì 3 n 5 = 3 là số nguyên tố, với n ≥2 thì 3 n 5 là hợp số.
Với n = 1 thì n 4 + 4 = 5 là số nguyên tố, với n ≥2 thì n 4 + 4 là hợp số