K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2020

Ta có : A = 2 + 22 + 23 + ... + 220

=> 2A = 22 + 23 + 24 + ... + 221

Khi đó 2A - A = (22 + 23 + 24 + ... + 221) - (2 + 22 + 23 + ... + 220)

             => A  = 221 - 2 = 220.2 - 2 = (24)5 . 2 - 2 = (...6)5.2 - 2 = (...6).2 - 2 = (....2) - 2 = ....0

Vậy chữ số tận cùng của A là 0

9 tháng 2 2021

A=2+22+23+...+220A=2+22+23+...+220

2A=22+23+24+...+2212A=22+23+24+...+221

2A−A=(22+23+24+...+221)−(2+22+23+...+220)2A−A=(22+23+24+...+221)−(2+22+23+...+220)

A=221−2=24.5+1−2=(24)5.2−2=165.2−2A=221−2=24.5+1−2=(24)5.2−2=165.2−2

A=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯.......6.2−2=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯........2−2=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯...........0A=.......6¯.2−2=........2¯−2=...........0¯

Vậy chữ số tận cùng cả A là 0

19 tháng 2 2021

chữ số tận cùng là số 0

19 tháng 2 2021

Ta có: 2 + 22 + 23 + ... + 220

= (2 + 22 + 23 + 24) + (25 + 2+ 27 + 28) + ... + (217 + 218 + 219 + 220)

= (2 + 22 + 23 + 24) + 24(2 + 22 + 23 + 24) + 28(2 + 22 + 23 + 24) + 216(2 + 22 + 23 + 24)

= (1 + 24 + 28 + 216)(2 + 22 + 23 + 24)

= 30(2 + 22 + 23 + 24)

Vì 30 có tận cùng là 0 nên 30(2 + 22 + 23 + 24) có tận cùng là 0

hay 2 + 22 + 23 + ... + 220 có tận cùng là 0

Chúc bn học tốt!

29 tháng 10 2023

chị làm a,b,c trc đc ko em, ấn nhiều mỏi quá

8 tháng 9 2017

a bang 2

b i don't know

AH
Akai Haruma
Giáo viên
25 tháng 2 2023

Lời giải:
$S=(2+2^2)+(2^3+2^4)+....+(2^{23}+2^{24})$

$=2(1+2)+2^3(1+2)+....+2^{23}(1+2)$

$=(1+2)(2+2^3+...+2^{23})$

$=3(2+2^3+...+2^{23})\vdots 3$

b.

$S=2+2^2+2^3+...+2^{23}+2^{24}$

$2S=2^2+2^3+2^4+....+2^{24}+2^{25}$

$\Rightarrow 2S-S=2^{25}-2$

$\Rightarrow S=2^{25}-2$

Ta có:

$2^{10}=1024=10k+4$

$\Rightarrow 2^{25}-2=2^5.2^{20}-2=32(10k+4)^2-2=32(100k^2+80k+16)-2$
$=10(320k^2+8k+51)\vdots 10$

$\Rightarrow S$ tận cùng là $0$

 

Giải:

a) \(A=1+2+2^2+2^3+...+2^{2021}\) 

\(2A=2+2^2+2^3+2^4+...+2^{2022}\) 

\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2022}\right)-\left(1+2+2^2+2^3+...+2^{2021}\right)\) 

\(A=2^{2022}-1\) 

Vì \(2^{2022}>2^{2021}\) nên \(A>2^{2021}\) 

b) Từ câu (a), ta có:

\(A=2^{2022}-1\) 

\(A=2^{2020}.2^2-1\) 

\(A=\left(2^4\right)^{505}.4-1\) 

\(A=16^{505}.4-1\) 

\(A=\left(\overline{...6}\right)^{505}.4-1\) 

\(A=\overline{...6}.4-1\) 

\(A=\overline{...4}-1\) 

\(A=\overline{...3}\) 

Vậy chữ số tận cùng của A là 3

c) Ta có:

\(A=1+2+2^2+2^3+...+2^{2021}\) 

\(A=1.\left(1+2\right)+2^2.\left(1+2\right)+...+2^{2020}.\left(1+2\right)\) 

\(A=1.3+2^2.3+...+2^{2020}.3\) 

\(A=3.\left(1+2^2+...+2^{2020}\right)⋮3\) 

Vậy \(A⋮3\left(đpcm\right)\)  

d) Ta có:

\(A=1+2+2^2+2^3+...+2^{2021}\) 

\(A=1.\left(1+2+2^2\right)+2^3.\left(1+2+2^2\right)+...+2^{2019}.\left(1+2+2^2\right)\) 

\(A=1.7+2^3.7+...+2^{2019}.7\) 

\(A=7.\left(1+2^3+...+2^{2019}\right)⋮7\)  

Vậy \(A⋮7\left(đpcm\right)\) 

Chúc bạn học tốt!

14 tháng 6 2021

Cảm ơn nhiều

 

11 tháng 10 2021

a) \(A=1+2+2^2+2^3+...+2^{99}\)

\(\Rightarrow2A=2+2^2+2^3+...+2^{100}\)

\(\Rightarrow A=2A-A=2+2^2+...+2^{100}-1-2-2^2-...-2^{99}=2^{100}-1\)

b) \(A=1+2+2^2+...+2^{99}=\left(1+2+2^2+2^3\right)+2^4\left(1+2+2^2+2^3\right)+...+2^{96}\left(1+2+2^2+2^3\right)\)

\(=15+2^4.15+...+2^{96}.15=15\left(1+2^4+...+2^{96}\right)\)

\(=3.5\left(1+2^4+...2^{96}\right)\) chia hết cho 3 và 5

c) \(A=1+2+2^2+...+2^{99}\)

\(=1+2\left(1+2+2^2\right)+...+2^{97}\left(1+2+2^2\right)\)

\(=1+2.7+...+2^{97}.7=1+7\left(2+...+2^{97}\right)\) chia 7 dư 1

=> A không chia hết cho 7