Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bg
Ta có: A = 2008 + 2007.2008 và B = 2006.2007.2008
Xét A = 2008 + 2007.2008:
=> A = 2008.1 + 2007.2008
=> A = 2008.(1 + 2007)
=> A = 2008.2008
=> A = 20082
=> A là số chính phương
=> ĐPCM (Điều phải chứng minh)
Xét B = 2006.2007.2008:
=> B = 2.17.59.32.223.23.251 (phân tích thừa số nguyên tố)
=> B \(⋮\)17
Mà B không chia hết cho 172 (vì trong biểu thức của B chỉ có một số là 17, các số còn lại đều không chia hết cho 17)
=> B không phải là số chính phương
=> ĐPCM
Ta co
A=2007^2006( lên lơp 6 e se hoc)
=>A=2007^2 x 2007^2004
=>(...9)x(...1)=(...9) (1)
Ta co:
B=2006^2007=(...6)
a) Ta có:
\(1-\frac{2005}{2006}=\frac{1}{2006}\)
\(1-\frac{2006}{2007}=\frac{1}{2007}\)
Vì \(\frac{1}{2006}>\frac{1}{2007}\)nên \(\frac{2005}{2006}>\frac{2006}{2007}\)
b) Ta có:
\(\frac{2008}{2007}-1=\frac{1}{2007}\)
\(\frac{2007}{2006}-1=\frac{1}{2006}\)
Vì \(\frac{1}{2006}>\frac{1}{2007}\)nên \(\frac{2008}{2007}< \frac{2007}{2006}\)
a, \(\frac{2005}{2006}v\text{à}\frac{2006}{2007}\)= \(\frac{2005\cdot2007}{2006\cdot2007}\)và \(\frac{2006\cdot2006}{2007\cdot2006}\)
= \(\frac{4024035}{4026042}\)< \(\frac{4024036}{4026042}\)
b, \(\frac{2008}{2007}v\text{à}\frac{2007}{2006}\)= \(\frac{2008\cdot2006}{2007\cdot2006}v\text{à}\frac{2007\cdot2007}{2006\cdot2007}\)
=\(\frac{4028048}{4026042}\)< \(\frac{4028049}{4026042}\)
\(M=2006^2+2006^2.2007^2+2007^2\)
\(=a^2+a^2.\left(a+1\right)^2+\left(a+1\right)^2\)
\(=\left(a+1\right)^2+a^2+a^4+a^2\left(2a+1\right)\)
\(=\left(a+1\right)^2+a^4+2a^2\left(a+1\right)\)
\(=\left(a^2+a+1\right)^2\)