K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2017

Hình NÀY mà, bn tự vẽ nha:

a, Do AB =AC ( gt)

=> tam giác ABC cân tại A

=> Góc ABI = góc ACI

Xét tam giác ABI và tam giÁC ACI có:

AB =AC ( gt)

ABI =ACI ( c/m trên)

BI = CI ( gt)

=> tam giác ABI= tam gics ACI (c.g.c)

=> góc BAI = GÓC CAI (2 GÓC TƯƠNG ỨNG)

=> AI LÀ TIA PHÂN GIÁC GÓC BAC

b, TỐI MIK BÀY TIẾP GIUWF MIK BẬN QUÁ

26 tháng 1 2022

a, Xét tam giác ABC có AB = AC 

Vậy tam giác ABC cân tại A

mà I là trung điểm BC => AI là đường trung tuyến 

=> AI đồng thời là đường phân giác ^BAC 

b, bạn xem lại đề, cả chỗ tính ^MAN ý a nhé 

31 tháng 12 2021

a: Xét ΔAIB và ΔAIC có 

AI chung

IB=IC

AB=AC

Do đó: ΔAIB=ΔAIC

a: Xét ΔABI và ΔACI có 

AB=AC

\(\widehat{BAI}=\widehat{CAI}\)

AI chung

Do đó: ΔABI=ΔACI

Ta có: ΔABC cân tại A

mà AI là đường trung tuyến

nên AI là đường phân giác

b: Xét ΔABM và ΔACN có 

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

Suy ra: AM=AN

c: Ta có: ΔABC cân tại A

mà AI là đường trung tuyến

nên AI là đường cao

6 tháng 1 2022

mình chưa học đến bài tam giác cân thì có bài làm nào khác không ạ?

 

12 tháng 12 2020

lấy công thức ra 

24 tháng 12 2016

Ta có hình vẽ sau:

B A C I M N

a/ Xét ΔABI và ΔACI có:

AI: Cạnh chung

AB = AC (gt)

BI = CI (gt)

=> ΔABI = ΔACI (c.c.c) (đpcm)

=> \(\widehat{BAI}=\widehat{CAI}\) (2 góc tương ứng)

=> AI là tia p/g của \(\widehat{BAC}\) (đpcm)

b/ Vì AB = AC => ΔABC cân => \(\widehat{ABC}=\widehat{ACB}\)

\(\widehat{ABC}+\widehat{ABM}=180^o\) (kề bù)

\(\widehat{ACB}+\widehat{ACN}=180^o\) (kề bù)

=> \(\widehat{ABM}=\widehat{ACN}\)

Xét ΔABM và ΔACN có:

BM = CN (gt)

\(\widehat{ABM}=\widehat{ACN}\left(cmt\right)\)

AB = AC (gt)

=> ΔABM = ΔACN (c.g.c)

=> AM = AN(2 cạnh tương ứng) (đpcm)

c/ Vì ΔABI = ΔACI (ý a)

=> \(\widehat{AIB}=\widehat{AIC}\) (2 cạnh tương ứng)

\(\widehat{AIB}+\widehat{AIC}=180^o\) (kề bù)

=> \(\widehat{AIB}=\widehat{AIC}=\frac{180^o}{2}=90^o\)

=> \(AI\perp BC\left(đpcm\right)\)

24 tháng 12 2016

ta có hình vẽ sau:

Hỏi đáp Toán

a) xét \(\Delta ABI\)\(\Delta ACI\) có:

\(AB=AC\left(gt\right)\)

\(I\) là cạnh chung

\(BI=CI\left(gt\right)\)

\(\Rightarrow\Delta ABI=\Delta ACI\left(c.c.c\right)\)

\(\Delta ABI=\Delta ACI\) nên \(\widehat{ABI}=\widehat{ACI}\) (hai góc tương ứng)

\(I\in BC\left(gt\right)\)\(BI=CI\left(gt\right)\) nên \(AI\) là tia phân giác của \(\widehat{BAC}\)

c) \(I\) là trung điểm của \(BC\) (1)

\(\widehat{AIB}+\widehat{AIC}=180^o\) (2)

Từ (1) và (2) \(\Rightarrow AI\perp BC\)

\(\Rightarrow\widehat{AIB}=\widehat{AIC}\) hay \(\widehat{AIM}=\widehat{AIN}\) ( vì \(N;M\in BC\)\(CN=BM\left(gt\right)\))

\(\Rightarrow IM=IN\) (hai cạnh tương ứng)

b) xét \(\Delta AIM\)\(\Delta AIN\) có:

\(AI\) là cạnh chung

\(\widehat{AIM}=\widehat{AIN}=90^o\) \(\left(cmt\right)\)

\(IM=IN\left(cmt\right)\)

\(\Rightarrow\Delta AIM=\Delta AIN\left(c.g.c\right)\)

\(\Rightarrow AM=AN\) (2 cạnh tương ứng)

 

 

 

 

 

 

 

\(a,Xét.\Delta ABI=\Delta ACI:\\ AB=AC\\ AI.chung\\ BI=CI\\ \rightarrow\Delta.....=\Delta....\left(c.c.c\right)\\ \Rightarrow\widehat{BAI}=\widehat{CAI};\widehat{ABI}=\widehat{ACi}\\ \rightarrow AI.là.phâ.giác.của.\widehat{BAC}\\ b,\widehat{ABI}=\widehat{ACI}\left(chứng.minh.trên\right)\\ Ta.có:\) 

\(\widehat{ABM}=180^0-\widehat{ABI}\\ \widehat{ACN}=180^0-\widehat{ACI} \\ \Rightarrow\widehat{ABM}=\widehat{ACN}\\ Xét.\Delta ABM.và.\Delta ACN.có:\\ AB=AC\\ \widehat{ABM}=\widehat{ACN}\\ BM=CN\\ \rightarrow\Delta...=\Delta...\left(c.g.c\right)\\ \Rightarrow AM=AN\) 

\(c,Vì.\Delta ABI=\Delta ACI\\ \rightarrow\widehat{AIB}=\widehat{AIC}\\ Ta.có:\widehat{AIB}+\widehat{AIC}=180^0\\ \rightarrow\widehat{AIB}=\widehat{AIC}=\dfrac{180}{2}=90^0\\ \rightarrow AI\perp BC\) 

Câu c sai đề mình sửa lại r đó:)

20 tháng 12 2021

a) Xét ΔABH,ΔAKHΔABH,ΔAKH có:
BH=HK(gt)BH=HK(gt)

ˆAHB=ˆAHKAHB^=AHK^

AH: cạnh chung

⇒ΔABH=ΔAKH(c−g−c)⇒ΔABH=ΔAKH(c−g−c)

b) Vì ΔABH=ΔAKHΔABH=ΔAKH

⇒AB=AK⇒AB=AK ( cạnh tương ứng ) (1)

Xét ΔAMK,ΔCMEΔAMK,ΔCME có:

AM=MC(=12AC)AM=MC(=12AC)

ˆM1=ˆM2M1^=M2^ ( đối đỉnh )

EM=KM(gt)EM=KM(gt)

⇒ΔAMK=ΔCME(c−g−c)⇒ΔAMK=ΔCME(c−g−c)

⇒EC=AK⇒EC=AK ( cạnh tương ứng ) (2)

Từ (1) và (2) ⇒EC=AB(=AK)⇒EC=AB(=AK)

c) Xét ΔAMEΔAME và ΔCMKΔCMK có:
AM=MC(=12AC)AM=MC(=12AC)

ˆM3=ˆM4M3^=M4^ ( đối đỉnh )

KM=EM(gt)KM=EM(gt)

⇒ΔAME=ΔCMK(c−g−c)⇒ΔAME=ΔCMK(c−g−c)

⇒ˆE1=ˆK1⇒E1^=K1^ ( góc tương ứng )

Mà ˆE1E1^ và ˆK1K1^ ở vị trí so le trong nên AE // KC hay AE // BC

Vậy a) ΔABH=ΔAKH