Giải phương trình: \(\frac{6x-3}{\sqrt{x}-\sqrt{1-x}}=3+2\sqrt{x-x^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{ĐK: }\hept{\begin{cases}0\le x\le1\\\sqrt{x}\ne\sqrt{1-x}\end{cases}\Leftrightarrow}\hept{\begin{cases}0\le x\le1\\2x-1\ne0\end{cases}}\)
\(\frac{6x-3}{\sqrt{x}-\sqrt{1-x}}=\frac{3\left(2x-1\right)\left(\sqrt{x}+\sqrt{1-x}\right)}{x-\left(1-x\right)}=\frac{3\left(2x-1\right)\left(\sqrt{x}+\sqrt{1-x}\right)}{2x-1}=3\left(\sqrt{x}+\sqrt{1-x}\right)\)\(\text{Đặt }t=\sqrt{x}+\sqrt{1-x}\)
\(t^2=x+1-x+2\sqrt{x}\sqrt{1-x}=1+2\sqrt{x-x^2}\)
\(\Rightarrow2\sqrt{x-x^2}=t^2-1\)
\(pt\rightarrow3t=3+t^2-1\Leftrightarrow t^2-3t+2=0\Leftrightarrow\orbr{\begin{cases}t=1\\t=2\end{cases}}\)
\(pt\Leftrightarrow\orbr{\begin{cases}\sqrt{x}+\sqrt{1-x}=1\\\sqrt{x}+\sqrt{1-x}=2\end{cases}}\)
a)√x2−9 - 3√x−3 =0
<=> (√x-3)(√x+3)-3√x-3=0
<=> (√x-3)(√x+3-3)=0
<=> (√x-3)√x=0
<=> √x-3=0
<=>x=9
b)√4x2−12x+9=x - 3
<=> √(2x -3)2 =x-3
<=> 2x-3=x-3
<=>2x-x=-3+3
<=>x=0
c)√x2+6x+9=3x-1
<=> √(x+3)2 =3x-1
<=> x+3=3x-1
<=> -2x=-4
<=> x=2
Nhớ cho mình 1 tim nha bạn
Sau em nên gõ các kí hiệu toán học ở phần Σ để mọi người dễ dàng đọc hơn nhé.
a) \(\sqrt {3{x^2} - 6x + 1} = \sqrt { - 2{x^2} - 9x + 1} \)
Bình phương hai vế của phương trình \(\sqrt {3{x^2} - 6x + 1} = \sqrt { - 2{x^2} - 9x + 1} \) ta được
\(3{x^2} - 6x + 1 = - 2{x^2} - 9x + 1\)
\( \Leftrightarrow 5{x^2} + 3x = 0\)
\( \Leftrightarrow x\left( {5x + 3} \right) = 0\)
\( \Leftrightarrow x = 0\) hoặc \(x = \frac{{ - 3}}{5}\)
Thay lần lượt hai giá trị này của x vào phương trình đã cho, ta thấy cả hai giá trị x = 0 và \(x = \frac{{ - 3}}{5}\) đều thỏa mãn.
Vậy tập nghiệm của phương trình đã cho là \(S = \left\{ {0;\frac{{ - 3}}{5}} \right\}\)
b) \(\sqrt {2{x^2} - 3x - 5} = \sqrt {{x^2} - 7} \)
Bình phương hai vế của phương trình \(\sqrt {2{x^2} - 3x - 5} = \sqrt {{x^2} - 7} \) , ta được
\(2{x^2} - 3x - 5 = {x^2} - 7\)
\( \Leftrightarrow {x^2} - 3x + 2 = 0\)
\( \Leftrightarrow x = 1\) hoặc \(\)\(x = 2\)
Thay lần lượt giá trị của x vào phương trình đã cho, ta thấy không có giá trị nào của x thỏa mãn.
Vậy phương trình đã cho vô nghiệm.
ĐK \(0\le x\le1\) và xkhác 1/2
Đặt \(\sqrt{x}=a;\sqrt{1-x}=b\) ( a>= 0 ; b> = 0 ) => \(a^2+b^2=1\left(1\right)\)
TA có \(6x-3=3\left(2x-1\right)=3\left(a^2-b^2\right)\)
\(\sqrt{x-x^2}=\)\(\sqrt{x\left(1-x\right)}=ab\)
Nên pt ban đầu <=> \(\frac{3\left(a^2-b^2\right)}{a-b}=3+2ab\Leftrightarrow3\left(a+b\right)=3+2ab\) (2)
Từ (1) và (2) ta có HPT \(\int^{a^2+b^2=1}_{3\left(a+b\right)=3+2ab}\Leftrightarrow\int^{2ab=\left(a+b\right)^2-1}_{3\left(a+b\right)=3+\left(a+b\right)^2-1\left(I\right)}\)
Đặt a + b = t pt (I) <=> t^2 - 3t + 2 = 0 => t = 1 hoặc 2
......tự làm tiếp nha
2x2+5x−1=7x3−1−−−−−√
⇔2(x2+x+1)+3(x−1)−7(x−1)(x2+x+1)−−−−−−−−−−−−−−−√(1)
Đặt a=x−1−−−−√;b=x2+x+1−−−−−−−−√;a≥0;b>0
pt (1) trở thành 3a2+2b2−7ab=0
a=2b v a=13b
nha