Cho (O) A là điểm nằm ngoài (O) , kẻ 2 tiếp tuyến AB,AC .
a) Chứng minh : OA // DC với BD là đường kính của (O)
b) Kẻ đường thẳng qua O vuông góc với AD và cắt BC tại E > Chứng minh ED là tiếp tuyến của (O) .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó: AB=AC
hay A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
nên O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
hay BC=2BI
a: Xét (O) có
AB,AC là tiếp tuyến
=>AB=AC
mà OB=OC
nên OA là trung trực của BC
=>OA vuông góc BC
Xét (O) có
ΔBCD nội tiếp
BD là đường kính
=>ΔBCD vuông tại C
=>BC vuông góc CD
=>CD//OA
b: Xét ΔBOA vuông tại B và ΔODE vuông tại O có
BO=OD
góc BOA=góc ODE
=>ΔBOA=ΔODE
=>OA=DE
mà OA//DE
nên OAED là hình bình hành
bạn ghi nốt đề đi, mình giúp tiếp nhé
a, Vì AB = AC ( tc tiếp tuyến )
OC = OB = R
Vậy OA là đường trung trực đoạn BC
=> AO vuông BC
b) Biết R = 5 cm, AB = 12 cm. Tính BC?
c) Chứng minh tứ giác AEDO là hình bình hành.
đây nhé bn
a: Xét ΔOBA và ΔOCA có
OB=OC
\(\widehat{BOA}=\widehat{COA}\)
OA chung
Do đó: ΔOBA=ΔOCA
Suy ra: \(\widehat{OBA}=\widehat{OCA}=90^0\)
hay AC là tiếp tuyến của (O)
b:
Xét (O) có
ΔBDC nội tiếp
BD là đường kính
Do đó: ΔBDC vuông tại C
Xét ΔOBA vuông tại B và ΔDCB vuông tại C có
\(\widehat{BOA}=\widehat{CDB}\)
Do đó: ΔOBA∼ΔDCB
Suy ra: \(\dfrac{OB}{DC}=\dfrac{OA}{BD}\)
hay \(DC\cdot OA=2\cdot R^2\)