Cho x>0
Tìm gtnn của biểu thức \(x^2+\frac{2}{x^3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3: \(P=\dfrac{x}{\left(x+y\right)+\left(x+z\right)}+\dfrac{y}{\left(y+z\right)+\left(y+x\right)}+\dfrac{z}{\left(z+x\right)+\left(z+y\right)}\le\dfrac{1}{4}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}\right)+\dfrac{1}{4}\left(\dfrac{y}{y+z}+\dfrac{y}{y+x}\right)+\dfrac{1}{4}\left(\dfrac{z}{z+x}+\dfrac{z}{z+y}\right)=\dfrac{3}{2}\).
Đẳng thức xảy ra khi x = y = x = \(\dfrac{1}{3}\).
\(\Leftrightarrow P=\left(\frac{x\left(3-x\right)}{9-x^2}+\frac{2\left(x+3\right)}{9-x^2}+\frac{x^2-1}{9-x^2}\right):\left(\frac{2\left(x+3\right)-\left(x+5\right)}{x+3}\right)\)
\(\Leftrightarrow P=\frac{3x-x^2+2x+6+x^2-1}{9-x^2}:\frac{x+1}{x+3}\)
\(\Leftrightarrow P=\frac{5\left(x+1\right)}{\left(3-x\right)\left(x+3\right)}.\frac{x+3}{x+1}\)
\(\Leftrightarrow P=\frac{5}{3-x}\) Ta có A=\(\frac{10x^2}{x-3}\)
\(E=\frac{x^2}{x-2}.\left(\frac{x^2+4}{x}-4\right)+3\)( \(ĐK:x\ne2;x\ne0\))
\(=\frac{x^2}{x-2}.\frac{x^2-4x+4}{x}+3\)
\(=\frac{x^2}{x-2}.\frac{\left(x-2\right)^2}{x}+3=x\left(x-2\right)+3=x^2-2x+3\)
b, \(E=x^2-2x+3=\left(x-1\right)^2+2\ge2\forall x\)
Dấu "=" xảy ra khi \(x-1=0\Rightarrow x=1\)
Vậy GTNN của E là 2 khi x = 1
Bài Làm:
a, \(P=\frac{x+3}{\sqrt{x}-2}:\left(\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{x-4}\right)\)
\(=\frac{x+3}{\sqrt{x}-2}:\left(\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right)\)
\(=\frac{x+3}{\sqrt{x}-2}:\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+5\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{x-3}{\sqrt{x}-2}:\frac{x-3\sqrt{x}+2+5\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{x-3}{\sqrt{x}-2}:\frac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x+3}{\sqrt{x}-2}:\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{x+3}{\sqrt{x}-2}:\frac{\sqrt{x}}{\sqrt{x}-2}\)
\(=\frac{x+3}{\sqrt{x}-2}.\frac{\sqrt{x}-2}{\sqrt{x}}=\frac{x+3}{\sqrt{x}}\)
\(A=\frac{x^2+2x+3}{x^2+4x+4}-\frac{2}{3}+\frac{2}{3}\)
\(=\frac{x^2-2x+1}{\left(x+2\right)^2}+\frac{2}{3}\)
\(=\frac{\left(x-1\right)^2}{\left(x+2\right)^2}+\frac{2}{3}\)
\(\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left(x+2\right)^2\ge0\end{cases}\Rightarrow\frac{\left(x-1\right)^2}{\left(x+2\right)^2}\ge0}\)
Dấu '' ='' xảy ra khi và chỉ khi x=1
=> Min A =2/3 khi x=1