K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2018

a) xét tam giác AMD và tam giác CMB có :

AM = CM ( vì Mlaf trung điểm của AC)

\(\widehat{AMD}=\widehat{CMB}\)(đối đỉnh)

MD = MB (gt)

=> tam giác AMD = tam giác CMB (c-g-c)

xét tam giác ANE và tam giác BNC có :

AN = BN ( vì N là trung điểm của AB)

\(\widehat{ANE}=\widehat{BNC}\)(đối đỉnh)

NE = CN (gt)

=> tam giác ANE = tam giác BNC (c-g-c)

b) vì tam giác AMD = tam giác CMB (cmt) => AD = BC (2 cạnh tương ứng)(1)

vì tam giác ANE = tam giác BNC (cmt) => AE = BC ( 2 cạnh tương ứng) (2)

từ (1), (2) => AD = AE (đpcm)

c) Vì tam giác AMD = tam giác CMB (cmt) => \(\widehat{MAD}=\widehat{MCB}\)(2 góc tương ứng)

mà \(\widehat{MAD}\)và \(\widehat{MCB}\)ở vị trí so le trong

do đó AD // BC (3)

Vì tam giác ANE = tam giác BNC (cmt) => \(\widehat{NAE}=\widehat{NBC}\)(2 góc tương ứng)

mà \(\widehat{NAE}\)và  \(\widehat{NBC}\) ở vị trí so le trong

do đó AE // BC (4)

từ (3), (4) => A, E, D thẳng hàng (đpcm) 

18 tháng 12 2016

a)Xét ΔAMD và ΔCMB có :

góc AMB = góc CMD ( đối đỉnh)

AM = NC ( GT)

BM = MD ( GT)

--->ΔAMD = ΔCMB(c.g.c)

b) ta có góc CAD = góc ACB(ΔAMD = ΔCMB)

tạo ra hai góc so le trong bằng nhau

--->AD//BC

c)Xét ΔABC và ΔCDA có :

AC : cạnh chung

AD = BC (ΔAMD = ΔCMB)

góc CAD = góc ACB(ΔAMD = ΔCMB)

--->ΔABC = ΔCDA(c.g.c)

d)ta có AE + ED = AD

AF+ FC = BC

mà EF= BF; AD = BC

--->AE = FC

xét ΔAFC và ΔACE có :

AE = FC (CMT)

AC : cạnh chung

góc CAE = góc ACF (ΔAMD = ΔCMB)

--->ΔAFC = ΔCEA ( c.g.c)

--->góc AEC = góc AFC ( hai góc tương ứng)

--->góc AEC = góc AFC=90'

--->AF vuông góc với BC

Hỏi đáp Toán

18 tháng 12 2016

a) Xét t/g AMD và t/g CMB có:

AM = CM (gt)

AMD = CMB ( đối đỉnh)

MD = MB (gt)

Do đó, t/g AMD = t/g CMB (c.g.c) (đpcm)

b) t/g AMD = t/g CMB (câu a)

=> ADM = CBM (2 góc tương ứng)

Mà ADM và CBM là 2 góc so le trong nên AD // BC (đpcm)

c) t/g AMD = t/g CMB (câu a)

=> AD = BC (2 cạnh tương ứng)

Xét t/g ABC và t/g CDA có:

BC = AD (gt)

ACB = CAD (so le trong)

AC là cạnh chung

Do đó, t/g ABC = t/g CDA (c.g.c) (đpcm)

d) Có: AD = BC (câu c)

DE = BF (gt)

Suy ra AD - DE = BC - BF

=> AE = CF

Mà AE // CF do AD // BC (câu b)

Nên CE // AF ( vì theo tính chất đoạn chắn AE = CF khi AE // CF và CE // AF)

Lại có: CE _|_ AD (gt) => AF _|_ AD

Mà BC // AD (câu b) => AF _|_ BC (đpcm)

 

29 tháng 12 2021

b: Xét tứ giác ABCD có

M là trung điểm của AC

M là trung điểm của BD

Do đó: ABCD là hình bình hành

Suy ra: AB//CD

11 tháng 2 2018

|a-c|<3;|b-c|<2 CMR:|a-b|<5