Tìm x, y, z biết rằng: \(x^2+y^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}=4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Cauchy cho hai số không âm ta có
\(x^2+\dfrac{1}{x^2}\ge2\sqrt{x^2.\dfrac{1}{x^2}}=2\)
\(y^2+\dfrac{1}{y^2}\ge2\sqrt{x^2.\dfrac{1}{x^2}}=2\)
=> \(x^2+y^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge4\)
Dấu"=" xảy ra \(\Leftrightarrow x^2=\dfrac{1}{x^2};y^2=\dfrac{1}{y^2}\)
\(\Leftrightarrow x^4=1;y^4=1\Leftrightarrow x=\pm1;y=\pm1\)
Thảo ơi== Sao tao không vào hộp tin nhắn của mày với tao được==??
a) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
X/3 = y/4 = x/3 + y/4 = 28/7 = 4
=> x = 4 × 3 = 12
=> y = 4 × 4 = 16
Vậy x = 12, y = 16
B) Áp dụng tính chất dãy tỉ số bằng nhau ta được:
X/2 = y/(-5) = x/2 - y/(-5) = (-7)/7 = -1
=> x = -1 × 2 = -2
=> y = -1 × -5 = 5
Vậy x = -2, y = 5
C) làm tương tự như bài a, b
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
x8=y12=z15=x+y−z8+12−15=105=2x8=y12=z15=x+y−z8+12−15=105=2
Do đó: x=16; y=24; z=30
\(\Leftrightarrow\dfrac{x^2}{2}-\dfrac{x^2}{5}+\dfrac{y^2}{3}-\dfrac{y^2}{5}+\dfrac{z^2}{4}-\dfrac{z^2}{5}=0\)
\(\Leftrightarrow\dfrac{3}{10}x^2+\dfrac{2}{15}y^2+\dfrac{1}{20}z^2=0\)
\(\Leftrightarrow x=y=z=0\)
b, Ta có : \(\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{5}=\dfrac{z}{6}\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{24}\)
Đặt \(x=15k;y=20k;z=24k\)
Thay vào A ta được : \(A=\dfrac{30k+60k+96k}{45k+80k+120k}=\dfrac{186k}{245k}=\dfrac{186}{245}\)
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{2\cdot2+3\cdot3-4}=\dfrac{45}{9}=5\)
Do đó: x-1=10; y-2=15; z-3=20
=>x=11; y=17; z=23
c: Ta có: 10x=6y
nên x/3=y/5
Đặt x/3=y/5=k
=>x=3k; y=5k
Ta có: \(2x^2-y^2=-28\)
\(\Leftrightarrow2\cdot9k^2-25k^2=-28\)
\(\Leftrightarrow k^2=4\)
Trường hợp 1: k=2
=>x=6; y=10
TRường hợp 2: k=-2
=>x=-6; y=-10
ĐK: x,y khác 0
Áp dụng BĐT Cô-si ta có:
\(x^2+y^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}\\ \ge2\sqrt{x^2.\dfrac{1}{x^2}}+2\sqrt{y^2.\dfrac{1}{y^2}}\\ =2+2=4\)
Dấu bằng xảy ra khi và chỉ khi: \(x=y=\pm1\)
Ta có:
\(x^2+y^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}=4\\ \Leftrightarrow x^2-2+\dfrac{1}{x^2}+y^2-2+\dfrac{1}{y^2}=0\\ \Leftrightarrow\left(x-\dfrac{1}{x}\right)^2+\left(y-\dfrac{1}{y}\right)^2=0\)
Do \(\left(x-\dfrac{1}{x}\right)^2+\left(y-\dfrac{1}{y}\right)^2=0\) và \(\left\{{}\begin{matrix}\left(x-\dfrac{1}{x}\right)^2\ge0\\\left(y-\dfrac{1}{y}\right)^2\ge0\end{matrix}\right.\) nên:
\(\left(x-\dfrac{1}{x}\right)^2=\left(y-\dfrac{1}{y}\right)^2=0\)
Do đó: \(x=y=\pm1\)