Từ 52 số nguyên dương, chúng ta có thể chọn ra 2 số sao cho tổng hoặc hiệu của chúng chia hết cho 100. Khẳng định này còn đúng với 51 số nguyên dương?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu trong \(52\)số đã cho có hai số có cùng số dư khi chia cho \(100\)ta chỉ cần chọn hai số đó, có hiệu chia hết cho \(100\).
Nếu trong \(52\)số đã cho không có hai số nào có cùng số dư khi chia cho \(100\).
Xét các bộ \(0,\left(1,99\right),\left(2,98\right),...,\left(a,100-a\right),...,\left(49,51\right)\)(các số dư của các số khi chia cho \(100\))
Có \(51\)bộ mà có \(52\)số nên theo nguyên lí Dirichlet có ít nhất hai số thuộc một bộ.
Xét hai số thuộc bộ đó, dễ thấy tổng của chúng chia hết cho \(100\).
Ta có đpcm.
anh Đoàn Đức Hà ơi chỉ có 50 bộ thôi mà anh sao lại 51 bộ ạ
Ta xét 51 nhóm sau:
Nhóm 1: Các số tự nhiên chia hết cho 100
Nhóm 2: Các số tự nhiên chia 100 dư 1 và 99
Nhóm 3: Các số tự nhiên chia 100 dư 2 và 98
...
Nhóm 51: Các số tự chia 100 dư 50
Nếu có 2 số cùng chia hết cho 100 thì bài toán đã chứng minh
Nếu không có 2 số chia hết 100 thì ta làm như sau:
Vì có 52 số mà có 51 nhóm nên theo nguyên lí Đi rich lê phải có 1 nhóm có tổng hoặc hiệu chia hết cho 100
=> Đpcm
đây nha bạn chúc bạn học tốt
Nếu có 2 số có cùng số dư khi chia hết cho 100 thì bài toán được giải.Giả sử không có hai số nào cùng số dư khi chia cho 100.Khi đó,có ít nhất 51 số khi chia hết cho 100 có số dư khác 50 là \(a_1,a_2,...,a_{50}\)
Đặt \(b_i=-a_i\left(1\le i\le51\right)\)
Xét 102 số : \(a_i\)và \(b_i\)
Theo nguyên tắc của Dirichlet thì tồn tại \(i\ne j\)sao cho \(a_i\equiv b_j\left(mod100\right)\)
=> \(a_i+a_j⋮100\)
Này m đk lm đề này ak , t bh mới đk cô cho lm . Mẹ khó vãi , mỗi câu đầu m hỏi t làm đk thôi