cho PT\(\sqrt{x^2+mx}-\sqrt{x-2}=0\) tìm các giá trị thực của m sao cho pt có 2 nghiệm x1x2 sao cho x1+x2=3(x1x2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta=m^2-4\left(m-2\right)=\left(m-2\right)^2+4>0;\forall m\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-2\end{matrix}\right.\)
\(P=x_1x_2-\left(x_1^2+x_2^2\right)=3x_1x_2-\left(x_1+x_2\right)^2\)
\(P=3\left(m-2\right)-m^2=-m^2+3m-6=-\left(m-\dfrac{3}{2}\right)^2-\dfrac{15}{4}\le-\dfrac{15}{4}\)
\(P_{max}=-\dfrac{15}{4}\) khi \(m=\dfrac{3}{2}\)
\(P_{min}\) ko tồn tại
Bạn ghi sai đề?
\(Δ=(-m)^2-4.1.(m-2)\\=m^2-4m+8\\=m^2-4m+4+4\\=(m-2)^2+4\)
\(\to\) Pt luôn có 2 nghiệm phân biệt
Theo Viét
\(\begin{cases}x_1+x_2=m\\x_1x_2=m-2\end{cases}\)
\(x_1x_2-x_1^2-x_2^2\\=3x_1x_2-(x_1^2+2x_1x_2+x_2^2)\\=3x_1x_2-(x_1+x_2)^2\\=3(m-2)-m^2\\=-m^2+3m-6\\=-\bigg(m^2-2.\dfrac{3}{2}.m+\dfrac{9}{4}+\dfrac{15}{4}\bigg)\\=-\bigg(m-\dfrac{3}{2}\bigg)^2-\dfrac{15}{4}\le -\dfrac{15}{4}\\\to \max P=-\dfrac{15}{4}\leftrightarrow m-\dfrac{3}{2}=0\\\leftrightarrow m=\dfrac{3}{2}\)
Vậy \(\max P=-\dfrac{15}{4}\)
\(\Delta'=m-1\ge0\Rightarrow m\ge1\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-m+1\end{matrix}\right.\)
\(A=x_1x_2-\left(x_1+x_2\right)\)
\(=m^2-3m+1\)
Biểu thức này ko có max, chỉ có min, chắc bạn ghi ko đúng đề
Để phương trình có 2 nghiệm \(x_1;x_2\)thì \(\Delta'=\left(m+2\right)^2-m^2-7>0\Rightarrow m^2+4m+4-m^2-7>0\)
\(\Rightarrow4m-3>0\Rightarrow m>\frac{3}{4}\)
Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2m+4\\x_1.x_2=m^2+7\end{cases}}\)
Yêu cầu bài toán \(\Leftrightarrow m^2+7=4+2\left(2m+4\right)\Leftrightarrow m^2-4m-5=0\)
\(\Leftrightarrow\left(m+1\right)\left(m-5\right)=0\Leftrightarrow\orbr{\begin{cases}m=-1\left(l\right)\\m=5\left(tm\right)\end{cases}}\)
Vậy \(m=5\)
ĐK: \(x\ge2\)
\(pt\Leftrightarrow x^2+mx=x-2\)
\(\Leftrightarrow x^2+\left(m-1\right)x+2=0\)
Phương trình có hai nghiệm \(\Leftrightarrow\Delta=m^2-2m-7\ge0\Leftrightarrow\left[{}\begin{matrix}m\le1-2\sqrt{2}\\m\ge1+2\sqrt{2}\end{matrix}\right.\)
Theo định lí Vi-ét \(\left\{{}\begin{matrix}x_1+x_2=1-m\\x_1.x_2=2\end{matrix}\right.\)
\(x_1+x_2=3x_1x_2\)
\(\Leftrightarrow1-m=6\)
\(\Leftrightarrow m=-5\left(tm\right)\)