Cho abc = 1. Tính giá trị của biểu thức:
Q = \(\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\)
\(A=\dfrac{a^2bc}{ab+a^2bc+abc}+\dfrac{b}{bc+b+abc}+\dfrac{c}{ac+c+1}\)
\(A=\dfrac{a^2bc}{ab\left(1+ac+c\right)}+\dfrac{b}{b\left(c+1+ac\right)}+\dfrac{c}{ac+c+1}\)
\(A=\dfrac{ac+1+c}{ac+c+1}\)
\(A=1\)
\(A=\dfrac{ab}{ab+a+1}+\dfrac{bc}{bc+b+1}+\dfrac{ca}{ca+c+1}\)
\(A=\dfrac{abc}{abc+ac+c}+\dfrac{bc}{bc+b+abc}+\dfrac{ca}{ca+c+1}\)
\(A=\dfrac{1}{1+ac+c}+\dfrac{c}{c+1+ac}+\dfrac{ca}{ca+c+1}\)
\(A=1\)
Dự đoán điểm rơi xảy ra tại \(\left(a;b;c\right)=\left(3;2;4\right)\)
Đơn giản là kiên nhẫn tính toán và tách biểu thức:
\(D=13\left(\dfrac{a}{18}+\dfrac{c}{24}\right)+13\left(\dfrac{b}{24}+\dfrac{c}{48}\right)+\left(\dfrac{a}{9}+\dfrac{b}{6}+\dfrac{2}{ab}\right)+\left(\dfrac{a}{18}+\dfrac{c}{24}+\dfrac{2}{ac}\right)+\left(\dfrac{b}{8}+\dfrac{c}{16}+\dfrac{2}{bc}\right)+\left(\dfrac{a}{9}+\dfrac{b}{6}+\dfrac{c}{12}+\dfrac{8}{abc}\right)\)
Sau đó Cô-si cho từng ngoặc là được
Bài 1: Ta có:
\(M=\frac{ad}{abcd+abd+ad+d}+\frac{bad}{bcd.ad+bc.ad+bad+ad}+\frac{c.abd}{cda.abd+cd.abd+cabd+abd}+\frac{d}{dab+da+d+1}\)
\(=\frac{ad}{1+abd+ad+d}+\frac{bad}{d+1+bad+ad}+\frac{1}{ad+d+1+abd}+\frac{d}{dab+da+d+1}\)
$=\frac{ad+abd+1+d}{ad+abd+1+d}=1$
Bài 2:
Vì $a,b,c,d\in [0;1]$ nên
\(N\leq \frac{a}{abcd+1}+\frac{b}{abcd+1}+\frac{c}{abcd+1}+\frac{d}{abcd+1}=\frac{a+b+c+d}{abcd+1}\)
Ta cũng có:
$(a-1)(b-1)\geq 0\Rightarrow a+b\leq ab+1$
Tương tự:
$c+d\leq cd+1$
$(ab-1)(cd-1)\geq 0\Rightarrow ab+cd\leq abcd+1$
Cộng 3 BĐT trên lại và thu gọn thì $a+b+c+d\leq abcd+3$
$\Rightarrow N\leq \frac{abcd+3}{abcd+1}=\frac{3(abcd+1)-2abcd}{abcd+1}$
$=3-\frac{2abcd}{abcd+1}\leq 3$
Vậy $N_{\max}=3$
Thỏa mãn $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1$ hay $a+b+c=1$ vậy bạn?
Lời giải:
\(Q=\frac{ab}{c+ab}+\frac{ac}{b+ac}+\frac{bc}{a+bc}-\frac{1}{4abc}=\frac{ab}{c(a+b+c)+ab}+\frac{ac}{b(a+b+c)+ac}+\frac{bc}{a(a+b+c)+bc}-\frac{1}{4abc}\)
\(=\frac{ab}{(c+a)(c+b)}+\frac{ac}{(b+a)(b+c)}+\frac{bc}{(a+b)(a+c)}-\frac{1}{4abc}\)
\(=\frac{ab(a+b)+ac(a+c)+bc(b+c)}{(a+b)(b+c)(c+a)}-\frac{1}{4abc}\)
\(=\frac{(a+b)(b+c)(c+a)-2abc}{(a+b)(b+c)(c+a)}-\frac{1}{4abc}\) (đẳng thức quen thuộc \((a+b)(b+c)(c+a)=ab(a+b)+bc(b+c)+ca(c+a)+2abc\) )
\(=1-\left(\frac{2abc}{(a+b)(b+c)(c+a)}+\frac{1}{4abc}\right)\)
Áp dụng BĐT AM-GM:
\(\frac{2abc}{(a+b)(b+c)(c+a)}+\frac{1}{108abc}\geq 2\sqrt{\frac{1}{54(a+b)(b+c)(c+a)}}\).
Mà \(2=(a+b)+(b+c)+(c+a)\geq 3\sqrt[3]{(a+b)(b+c)(c+a)}\Rightarrow (a+b)(b+c)(c+a)\leq \frac{8}{27}\)
\(\Rightarrow \frac{2abc}{(a+b)(b+c)(c+a)}+\frac{1}{108abc}\geq \frac{1}{2}\)
\(1=a+b+c\geq 3\sqrt[3]{abc}\Rightarrow abc\leq \frac{1}{27}\)
\(\Rightarrow \frac{13}{54abc}\geq \frac{13}{2}\)
Do đó: \(\frac{2abc}{(a+b)(b+c)(c+a)}+\frac{1}{4abc}\geq 7\)
\(\Rightarrow Q\leq 1-7=-6=Q_{\max}\)
Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$
bạn ơi lí do vì sao ở cái biểu thức bạn rút gọn là \(1-\left(\dfrac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}+\dfrac{1}{4abc}\right)\)
nhưng bạn dùng bđt cô-si lại là
\(\dfrac{2abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}+\dfrac{1}{108abc}\)
\(\dfrac{1}{4abc}\) bạn không dùng mà bạn lại dùng là \(\dfrac{1}{108abc}\) vậy bạn?
Bạn có thể giải thích rõ chỗ đó cho mình được không bạn?
\(a^2+b^2-ab\ge\dfrac{1}{2}\left(a+b\right)^2-\dfrac{1}{4}\left(a+b\right)^2=\dfrac{1}{4}\left(a+b\right)^2\)
\(\Rightarrow\dfrac{1}{\sqrt{a^2-ab+b^2}}\le\dfrac{1}{\sqrt{\dfrac{1}{4}\left(a+b\right)^2}}=\dfrac{2}{a+b}\le\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
Tương tự:
\(\dfrac{1}{\sqrt{b^2-bc+c^2}}\le\dfrac{1}{2}\left(\dfrac{1}{b}+\dfrac{1}{c}\right)\) ; \(\dfrac{1}{\sqrt{c^2-ca+a^2}}\le\dfrac{1}{2}\left(\dfrac{1}{c}+\dfrac{1}{a}\right)\)
Cộng vế:
\(P\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Lười đánh máy thật sự, buốt tay lắm:((
Ta có: \(Q=\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\)
\(Q=\dfrac{ac}{c\left(ab+a+1\right)}+\dfrac{abc}{ac\left(bc+b+1\right)}+\dfrac{c}{ac+c+1}\)
\(Q=\dfrac{ac}{abc+ac+c}+\dfrac{abc}{abc^2+abc+ac}+\dfrac{c}{ac+c+1}\)
\(Q=\dfrac{ac}{1+ac+c}+\dfrac{1}{c+a+ac}+\dfrac{c}{ac+c+1}\)
\(Q=\dfrac{ac+1+c}{1+ac+c}=1\)
Vậy Q=1
Q=ab+a+1a+bc+b+1b+ac+c+1c
Q=\dfrac{ac}{c\left(ab+a+1\right)}+\dfrac{abc}{ac\left(bc+b+1\right)}+\dfrac{c}{ac+c+1}Q=c(ab+a+1)ac+ac(bc+b+1)abc+ac+c+1c
Q=\dfrac{ac}{abc+ac+c}+\dfrac{abc}{abc^2+abc+ac}+\dfrac{c}{ac+c+1}Q=abc+ac+cac+abc2+abc+acabc+ac+c+1c
Q=\dfrac{ac}{1+ac+c}+\dfrac{1}{c+a+ac}+\dfrac{c}{ac+c+1}Q=1+ac+cac+c+a+ac1+ac+c+1c
Q=\dfrac{ac+1+c}{1+ac+c}=1Q=1+ac+cac+1+c=1
chúc bạn thi tốt