Phân tích đa thức sau thành nhân tử:
\(x^2+\left(\sqrt{3}+\sqrt{2}\right)x+\sqrt{6}\)
Làm đúng tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
đặt \(t=x^2+7x+10\Rightarrow x^2+7x+12=t+2\)
\(\Rightarrow\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24=t\left(t+2\right)-24=t^2+2t-24=\left(t-4\right)\left(t+6\right)=\)
\(=\left(x^2+7x+10-4\right)\left(x^2+7x+10+6\right)=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)
\(x^3\left(x^2-7\right)^2-36x\)
\(=x.\left[x^2.\left(x^2-7\right)^2-36\right]\)
\(=x.\left[\left(x^3-7x\right)^2-6^2\right]\)
\(=x.\left(x^3-7x-6\right).\left(x^3-7x+6\right)\)
\(=x.\left(x+1\right)\left(x^2-x-6\right).\left(x-1\right).\left(x^2+x-6\right)\)
\(=x.\left(x+1\right).\left(x+2\right).\left(x+3\right).\left(x-1\right).\left(x-2\right).\left(x-3\right)\)
Ta có : \(x^3\left(x^2-7\right)^2-36x\)
= \(x^3\left(x^4-14x^2+49\right)-36x\)
= \(x\left(x^6-14x^4+49x^2-36\right)\)
= \(x\left(x^2-1\right)\left(x^2-4\right)\left(x^2-9\right)\)---- chỗ này tắt
= (x-3)(x-2)(x-1)x(x+1)(x+2)(x+3)
a, = [(x-2).(x+1)]^2+(x-2)^2
= (x-2)^2.(x+1)^2+(x-2)^2
= (x-2)^2.[(x+1)^2+1]
= (x-2)^2.(x^2+2x+2)
Tk mk nha
b) \(6x^5+15x^4+20x^3+15x^2+6x+1\)
\(=6x^5+3x^4+12x^4+6x^3+14x^3+7x^2+8x^2+4x+2x+1\)
\(=\left(2x+1\right)\left(3x^4+6x^3+7x^2+4x+1\right)\)
\(=\left(2x+1\right)\left(3x^4+3x^3+3x^2+3x^3+3x^2+3x+x^2+x+1\right)\)
\(=\left(2x+1\right)\left(x^2+x+1\right)\left(3x^2+3x+1\right)\)