K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2020

ĐK: \(x\ge\dfrac{1}{3}\)

\(2x^2+3x-4=\left(4x-3\right)\sqrt{3x-1}\)

\(\Leftrightarrow16x^2+24x-32=8\left(4x-3\right)\sqrt{3x-1}\)

\(\Leftrightarrow\left(4x-3\right)^2+16\left(3x-1\right)-8\left(4x-3\right)\sqrt{3x-1}=25\)

\(\Leftrightarrow\left(4x-3-4\sqrt{3x-1}\right)^2=25\)

\(\Leftrightarrow\left[{}\begin{matrix}4x-3-4\sqrt{3x-1}=5\\4x-3-4\sqrt{3x-1}=-5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{3x-1}=x-2\\2\sqrt{3x-1}=2x+1\end{matrix}\right.\)

TH1: \(\sqrt{3x-1}=x-2\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x-1=\left(x-2\right)^2\\x-2\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2-7x+6=0\\x\ge2\end{matrix}\right.\)

\(\Leftrightarrow x=6\left(tm\right)\)

TH2: \(2\sqrt{3x-1}=2x+1\)

\(\Leftrightarrow\left\{{}\begin{matrix}4\left(3x-1\right)=\left(2x+1\right)^2\\2x+1\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4x^2-8x+5\\x\ge-\dfrac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\) vô nghiệm

Vậy \(x=6\)

NV
23 tháng 12 2020

ĐKXĐ: \(x\ge\dfrac{1}{3}\)

Đặt \(\sqrt{3x-1}=t\ge0\Rightarrow3x-1=t^2\)

\(\Rightarrow\left\{{}\begin{matrix}2x^2+3x-4=\left(4x-3\right)t\\3x-1=t^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x^2+3x-4=4tx-3t\\2t^2=6x-2\end{matrix}\right.\)

\(\Leftrightarrow2x^2+2t^2+3x-4=4tx-3t+6x-2\)

\(\Leftrightarrow2\left(x-t\right)^2-3\left(x-t\right)-2=0\)

\(\Leftrightarrow...\)

NV
5 tháng 4 2022

ĐKXĐ: \(x\ge-\dfrac{1}{2}\)

\(2x^2+4x+3=3\sqrt{\left(x^2+x+1\right)\left(2x+1\right)}\)

\(\Leftrightarrow2\left(x^2+x+1\right)+\left(2x+1\right)-3\sqrt{\left(x^2+x+1\right)\left(2x+1\right)}=0\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x^2+x+1}=a>0\\\sqrt{2x+1}=b\ge0\end{matrix}\right.\)

\(\Rightarrow2a^2+b^2-3ab=0\)

\(\Leftrightarrow\left(a-b\right)\left(2a-b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\\2a=b\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+x+1}=\sqrt{2x+1}\\2\sqrt{x^2+x+1}=\sqrt{2x+1}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+1=2x+1\\4\left(x^2+x+1\right)=2x+1\end{matrix}\right.\)

\(\Leftrightarrow...\)

\(a,\left(x-1\right)\left(5x+3\right)=\left(3x-8\right)\left(x-1\right)\)

\(\left(x-1\right)\left(5x+3-3x+8\right)=0\)

\(\left(x-1\right)\left(2x+11\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-1=0\\2x+11=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\2x=-11\end{cases}\Rightarrow}\orbr{\begin{cases}x=1\\x=-\frac{11}{2}\end{cases}}}\)

\(b,3x\left(25x+15\right)-35\left(5x+3\right)=0\)

\(15x\left(5x+3\right)-35\left(5x+3\right)=0\)

\(\left(5x+3\right).5\left(3x-7\right)=0\)

\(\Rightarrow\orbr{\begin{cases}5x+3=0\\5\left(3x-7\right)=0\end{cases}\Rightarrow\orbr{\begin{cases}5x=-3\\3x-7=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{3}{5}\\3x=7\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{3}{5}\\x=\frac{7}{3}\end{cases}}}\)

29 tháng 12 2021

Chọn D

28 tháng 8 2019

a) Kết quả M = (x + l)(2x - 3);

b) Kết quả M = (2x - 1)(x - 2).

9 tháng 11 2021

a) x2(2x3-4x+3)
= 2x5-4x3+3x2
 

5 tháng 10 2021

\(A=\left(2x-1\right)^2+9\ge9\\ A_{min}=9\Leftrightarrow x=\dfrac{1}{2}\\ B=2\left(x^2-2\cdot\dfrac{3}{4}x+\dfrac{9}{16}\right)+\dfrac{1}{8}=2\left(x-\dfrac{3}{4}\right)^2+\dfrac{1}{8}\ge\dfrac{1}{8}\\ B_{min}=\dfrac{1}{8}\Leftrightarrow x=\dfrac{3}{4}\\ C=\left(4x^2+4xy+y^2\right)+2\left(2x+y\right)+1+\left(y^2+4y+4\right)-4\\ C=\left[\left(2x+y\right)^2+2\left(2x+y\right)+1\right]+\left(y+2\right)^2-4\\ C=\left(2x+y+1\right)^2+\left(y+2\right)^2-4\ge-4\\ C_{min}=-4\Leftrightarrow\left\{{}\begin{matrix}2x=-1-y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{2}\\y=-2\end{matrix}\right.\)

\(D=\left(3x-1-2x\right)^2=\left(x-1\right)^2\ge0\\ D_{min}=0\Leftrightarrow x=1\\ G=\left(9x^2+6xy+y^2\right)+\left(y^2+4y+4\right)+1\\ G=\left(3x+y\right)^2+\left(y+2\right)^2+1\ge1\\ G_{min}=1\Leftrightarrow\left\{{}\begin{matrix}3x=-y\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-2\end{matrix}\right.\)

5 tháng 10 2021

\(H=\left(x^2-2xy+y^2\right)+\left(x^2+2x+1\right)+\left(2y^2+4y+2\right)+2\\ H=\left(x-y\right)^2+\left(x+1\right)^2+2\left(y+1\right)^2+2\ge2\\ H_{min}=2\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=-1\\y=-1\end{matrix}\right.\Leftrightarrow x=y=-1\)

Ta luôn có \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz\ge0\\ \Leftrightarrow x^2+y^2+z^2\ge xy+yz+xz\\ \Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz\ge3xy+3yz+3xz\\ \Leftrightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\\ \Leftrightarrow\dfrac{3^2}{3}\ge xy+yz+xz\\ \Leftrightarrow K\le3\\ K_{max}=3\Leftrightarrow x=y=z=1\)

 

10 tháng 12 2021

\(a,PT\Leftrightarrow x^2-3x+2+x^2-x\sqrt{3x-2}=0\left(x\ge\dfrac{2}{3}\right)\\ \Leftrightarrow\left(x^2-3x+2\right)+\dfrac{x\left(x^2-3x+2\right)}{x+\sqrt{3x-2}}=0\\ \Leftrightarrow\left(x^2-3x+2\right)\left(1+\dfrac{x}{x+\sqrt{3x-2}}\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)\left(1+\dfrac{x}{x+\sqrt{3x-2}}\right)=0\)

Vì \(x\ge\dfrac{2}{3}>0\Leftrightarrow1+\dfrac{x}{x+\sqrt{3x-2}}>0\)

Do đó \(x\in\left\{1;2\right\}\)

10 tháng 12 2021

\(b,ĐK:0\le x\le4\\ PT\Leftrightarrow x+2\sqrt{x}+1=6\sqrt{x}-3-\sqrt{4-x}\\ \Leftrightarrow x-4\sqrt{x}+4=-\sqrt{4-x}\\ \Leftrightarrow\left(\sqrt{x}-2\right)^2=-\sqrt{4-x}\)

Vì \(VT\ge0\ge VP\Leftrightarrow VT=VP=0\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}-2=0\\\sqrt{4-x}=0\end{matrix}\right.\Leftrightarrow x=4\left(tm\right)\)

Vậy PT có nghiệm \(x=4\)

24 tháng 12 2021

a: \(=15x^5-25x^4+15x^3\)

b: \(=2x^3+10x^2-8x-x^2-5x+4\)

\(=2x^3+9x^2-13x+4\)