K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

`a,`

Vì `\Delta ABC` cân tại A

`-> \text {AB = AC, }` $\widehat {B} = \widehat {C}$

Xét `\Delta ABH` và `\Delta ACH`:

`\text {AB = AC}`

$\widehat {B} = \widehat {C}$

$\widehat {AHB} = \widehat {AHC} (=90^0) (\text {AH là đường cao của} \Delta ABC)$

`=> \Delta ABH = \Delta ACH (ch-gn)`

`b,`

Vì `\Delta ABH = \Delta ACH (a)`

`->` $\widehat {BAH} = \widehat {CAH} (\text {2 cạnh tương ứng})$

`-> \text {AH là đường phân giác của}` `\Delta ABC`

`c,`

Vì `\Delta ABH = \Delta ACH (a)`

`-> \text {HB = HC}`

Ta có:

`\text {AH} \bot \text {BC}`

`\text {HB = HC}`

`-> \text {AH là đường trung trực của}` `\Delta ABC`.

loading...

20 tháng 6 2021

Đây nhé

Không có mô tả.

20 tháng 6 2021

undefined

29 tháng 10 2023

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

b: ΔAHB=ΔAHC

=>\(\widehat{BAH}=\widehat{CAH}\)

=>AH là phân giác của \(\widehat{BAC}\)

c: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

=>HB=HC=BC/2=3cm

ΔAHB vuông tại H

=>\(HA^2+HB^2=AB^2\)

=>\(HA^2+3^2=5^2\)

=>\(HA^2=25-9=16\)

=>HA=4(cm)

a: Xét ΔAHB vuông tại H và ΔCHA vuông tạiH có

góc HAB=góc HCA

=>ΔAHB đồng dạng với ΔCHA

c: BK là phân giác

=>AK/CK=BA/BC

ΔAHC có AD là phân giác

nên DH/CD=AH/AC=BA/BC

=>DH/CD=AK/CK

=>KD//AH

30 tháng 7 2017

1 phần thôi nhé

Nối BE, Gọi P là giao điểm của AD với BE.

Áp dụng định lí Ceva cho tam giác ABE => AH/HE=BP/PE=> HP//AB(1).

Từ (1)=> Tam giác AHP cân tại H=> AH=HP.(2)

Ta cần chứng minh AD//CE <=> DP//CE <=> BD/BC=BP/BE <=> BD/BC=1-(EP/BE).(3)

Mà EP/BE=HP/AB (do (1))=> EP/BE= AH/AB=HD/DB (do (2) và tc phân giác).  (4)

Khi đó (3)<=> BD/BC=1-(HD/DB) hay (BD/BC)+(HD/DB)=1 <=> BD^2+HD*BC=BC*DB

<=>  BD^2+HD*BC= (BD+DC)*BD <=> BD^2+HD*BC= BD^2+BD*DC <=> HD*BC=BD*DC  

<=> HD/DB=CD/BC <=> AH/AB=CD/BC. (5) 

    Chú ý: Ta cm được: CA=CD (biến đổi góc).

Nên (5) <=> AH/AB=CA/BC <=> Tg AHB đồng dạng Tg CAB.( luôn đúng)

=> DpCm.