cho a,b,c>0 cm bc:a+ca:b+ab:c>=a+b+c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ \(\left(a+b+c\right):\left(a+b-c\right)=\left(a-b+c\right):\left(a-b-c\right)\)
\(\Rightarrow\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{\left(a+b+c\right)-\left(a-b+c\right)}{\left(a+b-c\right)-\left(a-b-c\right)}\)
\(=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b}{2b}=1\)
\(\Rightarrow a+b+c=a+b-c\)\(\Rightarrow\left(a+b+c\right)-\left(a+b-c\right)=0\)
\(\Rightarrow a+b+c-a-b+c=0\)\(\Rightarrow2c=0\)\(\Rightarrow c=0\)( đpcm )
\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
Chứng minh: \(VP=\left(x+y\right)\left(x^2-xy+y^2\right)=x^3-x^2y+xy^2+x^2y-xy^2+y^3=x^3+y^3=VP\)
Áp dụng vào bài
--------------------------------------------------
Ta có \(a+b+c=0\Leftrightarrow-c=a+b\)
\(\Rightarrow c^2=\left(a+b\right)\left(a+b\right)=a^2+2ab+b^2\)
Xét \(a^3+b^3+a^2c+b^2c-abc\)
\(=a^3+b^3+c\left(a^2+b^2+2ab\right)-3abc\)
\(=a^3+b^3+c.c^2-3abc\)
\(=a^3+b^3+c^3-3abc\)
\(=a^3+a^2b+2a^2b+2ab^2+ab^2+b^3-3a^2b-3ab^2+c^3-3abc\)
\(=a^2\left(a+b\right)+2ab\left(a+b\right)+b^2\left(a+b\right)+c^3-3ab\left(a+b+c\right)\)
\(=\left(a+b\right)\left(a^2+2ab+b^2\right)+c^3\) ( do a+b+c=0 )
\(=\left(a+b\right)\left[a\left(a+b\right)+b\left(a+b\right)\right]+c^3\)
\(=\left(a+b\right)\left(a+b\right)\left(a+b\right)+c^3=\left(a+b\right)^3+c^3\)
( Áp dụng \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\) )
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]=0\) ( do a+b+c=0 )
Vậy \(a^3+b^3+a^2c+b^2c-abc=0\)
a) We have :
a2 + b2 + c2 = ab + bc + ac
<=> 2a2 + 2b2 + 2c2 = 2ab + 2bc + 2ac
<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ac = 0
<=> (a2 - 2ab + b2) + (b2 - 2bc + c2) + (c2 - 2ac + a2) = 0
<=> (a - b)2 + (b - c)2 + (c - a)2 = 0
\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Rightarrow a=b=c\)
b) We have :
a2 - 2a + b2 + 4b + 4c2 - 4c + 6 = 0
(a2 - 2a + 1) + (b2 + 2.2b + 4) + (4c2 - 4c + 1) = 0
(a - 1)2 + (b + 2)2 + (2c - 1)2 = 0
\(\Leftrightarrow\hept{\begin{cases}a-1=0\\b+2=0\\2c-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=-2\\c=\frac{1}{2}\end{cases}}\)
hi bạn 2k7 à