cho a,b,c là độ dâì 3 cạnh tam giác. cm
a(b-c)^2+b(c-a)^2+c(a+b)^2>a^3+b^3+c^3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đề kiểu gì vậy bạn tui nghĩ là thế này
áp dụng BDT tam giác
\(=>\left\{{}\begin{matrix}a+b>c\\a+c>b\end{matrix}\right.\)\(=>\)\(\left(a+b-c\right)\left(a+c-b\right)>0< =>\left[a+\left(b-c\right)\right]\left[a-\left(b-c\right)\right]>0\)
\(=>a^2-\left(b-c\right)^2>0=>a^2>\left(b-c\right)^2=>\left(b-c\right)^2< a^2\)
\(=>a\left(b-c\right)^2< a^3\left(1\right)\)
cminh tương tự \(=>b\left(c-a\right)^2< b^3\left(2\right)\)
\(=>c\left(a-b\right)^2< c^3\left(3\right)\)
(1)(2)(3)\(=>VT< a^3+b^3+c^3\)
Sai đề rồi e ơi, mà tối qua thức coi euro hả,thấy 3h đêm còn làm bài :v
Ta thấy trong tam giác tổng độ dài hai cạnh luôn lớn hơn cạnh còn lại
Ta có: \(a+b>c\)
\(\Rightarrow\left(a+b\right)^2>c^2\)
\(\Rightarrow c\left(a+b\right)^2>c^3\)
Tương tự:
\(a\left(b+c\right)^2>a^3\)
\(b\left(a+c\right)^2>b^3\)
do đó \(a\left(b+c\right)^2+b\left(a+c\right)^2+c\left(a+b\right)^2>a^3+b^3+c^3\left(ĐPCM\right)\)
Ta có:
\(a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a+b\right)^2-a^3-b^3-c^3\)
\(=\left[a\left(b-c\right)^2-a^3\right]+\left[b\left(c-a\right)^2-b^3\right]+\left[c\left(a+b\right)^2-c^3\right]\)
\(=a\left[\left(b-c\right)^2-a^2\right]+b\left[\left(c-a\right)^2-b^2\right]+c\left[\left(a+b\right)^2-c^2\right]\)
\(=a\left(b-c-a\right)\left(b-c+a\right)+b\left(c-a-b\right)\left(c-a+b\right)+c\left(a+b-c\right)\left(a+b+c\right)\)
\(=a\left(b-c-a\right)\left(b-c+a\right)-b\left(c-a-b\right)\left(a+b-c\right)+c\left(a+b-c\right)\left(a+b+c\right)\)
\(=\left(a+b-c\right)\left[a\left(b-c-a\right)-b\left(c-a+b\right)+c\left(a+b+c\right)\right]\)
\(=\left(a+b-c\right)\left(ab-ac-a^2-bc+ab-b^2+ca+cb+c^2\right)\)
\(=\left(a+b-c\right)\left(2ab-a^2-b^2+c^2\right)\)
\(=\left(a+b-c\right)\left[c^2-\left(a^2-2ab+b^2\right)\right]\)
\(=\left(a+b-c\right)\left[c^2-\left(a-b\right)^2\right]\)
\(=\left(a+b-c\right)\left(c-a+b\right)\left(c+a-b\right)\)
vì a, b, c là cạnh của 1 tam giác
\(\Rightarrow\hept{\begin{cases}a+b-c>0\\c-a+b>0\\c+a-b>0\end{cases}}\)
\(\Rightarrow a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a+b\right)^2-a^3-b^3-c^3>0\)
\(\Rightarrow a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a+b\right)^2>a^3+b^3+c^3\)\(\left(đpcm\right)\)
ta có \(\frac{a^2}{b+c-a}+\frac{b^2}{a+c-b}+\frac{c^2}{a+b-c}\ge\frac{\left(a+b+c\right)^2}{b+c-a+a+c-b+a+b-c}\) (BĐT svacxơ)
=>A\(\ge\frac{\left(a+b+c\right)^2}{a+b+c}=a+b+c\) (ĐPCM)
^_^
chào nha