K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2020

Áp dụng bất đẳng thức Cosi cho những số không âm, ta được: 

\(a^4+b^4+c^4+d^4\ge4\cdot\sqrt[4]{a^4\cdot b^4\cdot c^4\cdot d^4}=4abcd\)

Dấu '=' xảy ra khi a=b=c=d

hay tứ giác ABCD là hình thoi

\(a^4+b^4+c^4+d^4=4abcd\Leftrightarrow a^4-2a^2b^2+b^4+c^4-2c^2d^2+d^4+2\left(a^2b^2-2abcd+c^2d^2\right)=0\)

\(\Leftrightarrow\left(a^2-b^2\right)^2+\left(c^2-d^2\right)^2+2\left(ab-cd\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}\left(a-b\right)\left(a+b\right)=0\left(1\right)\\\left(c-d\right)\left(c+d\right)=0\left(2\right)\\ab-cd=0\left(3\right)\end{cases}}\)

Theo hai phương trình (1) và (2) ta được a=b và c=d( vì a,b,c,d là độ dài 4 cạnh của tứ giác lồi nên a+b và c+d >0 do đó a-b và c-d phải bằng 0)

Vì a=b và c=d nên thế vào phương trình (3) ta được\(a^2-c^2=0\Leftrightarrow\left(a-c\right)\left(a+c\right)\)Suy ra a=c

Vậy a=b=c=d hay abcd là hình thoi 

10 tháng 10 2017

Gán giá trị: a = b = c = d = 1

Ta có, giá trị phải thỏa mãn điều kiện \(a^4+b^4+c^4+d^4=4abcd\Leftrightarrow1^4+1^4+1^4+1^4=1+1+1+1\)

\(=4\) (thỏa mãn yêu cầu đề bài)

\(\RightarrowĐPCM\)

Ps: Làm xàm chút thôi! nhưng vẫn có thể đúng!

12 tháng 4 2020

áp dụng bất đẳng thức a2+b2\(\ge\)2ab, dấu bằng xảy ra khi a=b

Ta có a4+b4\(\ge\)2a2b2,dấu bằng xảy ra khi a=b

c4+d4\(\ge\)2c2d2,dấu bằng xảy ra khi c=d

a2b2+c2d2\(\ge\)2abcd,dấu bằng xảy ra khi ab=cd

Vậy a4+b4+c4+d4\(\ge\)2a2b2+2c2d2=2(a2b2+c2d2)\(\ge\)2.2abcd=4abcd

Dấu = xảy ra khi \(\hept{\begin{cases}a=b\\c=d\\ab=cd\end{cases}}\)suy ra a=b=c=d suy ra a,b,c,d là 4 cạnh của 1 hình thoi

 
20 tháng 12 2021

a: Xét tứ giác ABDC có

H là trung điểm của AD

H là trung điểm của BC

Do đó: ABDC là hình bình hành

mà AB=AC

nên ABDC là hình thoi

29 tháng 5 2017

a)Vì E đối xứng với điểm M qua điểm D nên M,D,E thẳng hàng và DM = DE (1)

Áp dụng tính chất đường trung bình cho DBAC ta có DM//AC.

DABC vuông tại A nên CA ^ AB Þ MD ^ AB (2)

Từ (1) và (2) Þ E đối xứng với M qua đường thẳng AB.

b) Tứ giác AEMC là hình bình hành, tứ giác AEBM là hình thoi.

c) Chu vi tứ giác AEBM là 4BM = 8 (cm)

d) nếu tứ giác AEBM là hình vuông thì ME = AB mà ME = AC (do ACME là hình bình hành) Þ AC = AB Þ DABC vuông cân tại A.

6 tháng 11 2021

E, F lần lượt là trung điểm của AB và BC (gt)

\(\Rightarrow\) EF là đường trung bình của tam giác ABC

\(\Rightarrow\) EF // AC và EF = \(\frac{1}{2}\) AC (1)

H, G lần lượt là trung điểm của AD và DC (gt)


\(\Rightarrow\) HG là đường trung bình của tam giác ACD

\(\Rightarrow\) HG // AC và HG = \(\frac{1}{2}\) AC (2)

Từ (1) và (2) \(\Rightarrow\) EF // HG và EF = HG

\(\Rightarrow\) Tứ giác EFGH là hình bình hành

Tứ giác EFGH là hình bình hành. EF // AC, EF = \(\frac{1}{2}\) AC 

Ta còn có EH là đường trung bình của tam giác ABD

\(\Rightarrow\) EH // BD và EH = \(\frac{1}{2}\) BD

- Tứ giác EFGH là hình chữ nhật

\(\Leftrightarrow\) Hình bình hành EFGH có: 

\(\widehat{HEF}=90^o\)

\(\Leftrightarrow HE\perp EF\)

\(\Leftrightarrow EH\perp AC\)

\(\Leftrightarrow AC\perp BD\)

Vậy tứ giác ABCD cần thêm điều kiện hai đường chéo AC và BD vuông góc với nhau thì tứ giác EFGH là hình chữ nhật

- Tứ giác EFGH là hình thoi

\(\Leftrightarrow\) Hình bình hành EFGH có: EF = EH \(\Leftrightarrow\) AC = BD

Vậy tứ giác ABCD cần thêm điều kiện hai đường chéo AC và BD bằng nhau thì tứ giác EFGH là hình thoi

- Tứ giác EFGH là hình vuông

\(\Leftrightarrow\) Hình chữ nhật EFGH có: EF = EH \(\Leftrightarrow\) AC = BD

Vậy tứ giác ABCD cần thêm điều kiện hai đường chéo AC và BD vuông góc và bằng nhau thì tứ giác EFGH là hình vuông

G C D H A E B F Yen Nhi

11 tháng 11 2021

a: Xét ΔABC có 

E là trung điểm của AB

D là trung điểm của AC

Do đó: ED là đường trung bình của ΔABC

Suy ra: ED//BC

Xét tứ giác BCDE có ED//BC

nên BCDE là hình thang

mà BD=CE

nên BCDE là hình thang cân