K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2020

Giải thích các bước giải:

Gọi HH là hình chiếu của OO trên đồ thị hàm số y=(1−3m)x+my=(1−3m)x+m

 Ta có:

y=(1−3m)x+m=m(1−3x)+xy=(1−3m)x+m=m(1−3x)+x có đồ thị là đường (d)(d)

Nhận thấy: Đồ thị hàm số trên luôn đi qua điểm A(13;13)A(13;13) cố định với mọi mm

Lại có:

OH≤OAOH≤OA (Quan hệ đường xiên - đường vuông góc)

⇒MaxOH=OA⇒MaxOH=OA

Mà: OA=√(13−0)2+(13−0)2=√23OA=(13−0)2+(13−0)2=23

⇒MaxOH=√23⇒MaxOH=23

Dấu bằng xảy ra

⇔H≡A⇔OA⊥(d)⇔H≡A⇔OA⊥(d)

Mà đường OAOA là đồ thị hàm số y=xy=x nên 

OA⊥(d)⇔(1−3m).1=−1⇔1−3m=−1⇔m=23OA⊥(d)⇔(1−3m).1=−1⇔1−3m=−1⇔m=23

Vậy m=23m=23

imagerotate

27 tháng 11 2023

y=(1-3m)x+m

=>(1-3m)x-y+m=0

Khoảng cách từ O(0;0) đến (d) là:

\(d\left(O;\left(d\right)\right)=\dfrac{\left|0\cdot\left(1-3m\right)+0\cdot\left(-1\right)+m\right|}{\sqrt{\left(1-3m\right)^2+1}}=\dfrac{\left|m\right|}{\sqrt{\left(1-3m\right)^2+1}}\)

Để d(O;(d)) lớn nhất thì m=0

4 tháng 9 2021

ai giup vs

 

NV
7 tháng 1 2021

Chắc pt đường thẳng là \(y=\left(3m-2\right)x+m-2\)

Viết lại dưới dạng:

\(\left(3x+1\right)m-\left(2x+y+2\right)=0\)

Ta được điểm \(M\left(-\dfrac{1}{3};-\dfrac{4}{3}\right)\) là điểm cố định thuộc (d)

Gọi H là chân đường vuông góc hạ từ O xuống d thì theo định lý đường xiên - đường vuông góc ta luôn có \(OH\le OM\Rightarrow OH_{max}=OM\) khi H trùng M hay đường thẳng (d) vuông góc OM

Phương trình OM có dạng: \(y=4x\Rightarrow\) (d) vuông góc OM khi \(\left(3m-2\right).4=-1\)

\(\Rightarrow m=\dfrac{7}{12}\)

24 tháng 5 2021

CÔ ƠI CHO EM HỎI Y=4X LẤY Ở ĐÂU RA Ả CÔ????

AH
Akai Haruma
Giáo viên
22 tháng 6 2023

Lời giải:

ĐK: $3m+1\neq 0$

Gọi $A,B$ lần lượt là giao điểm của $(d)$ với $Ox,Oy$

Vì $A\in Ox$ nên $y_A=0$

$y_A=(3m+1)x_A-6m-1=0$

$\Rightarrow x_A=\frac{6m+1}{3m+1}$

Vậy $A(\frac{6m+1}{3m+1},0)$

Tương tự: $B(0, -6m-1)$

Gọi $h$ là khoảng cách từ $O$ đến $(d)$

Khi đó, theo hệ thức lượng trong tam giác vuông ta có:

$\frac{1}{h^2}=\frac{1}{OA^2}+\frac{1}{OB^2}$

$=\frac{1}{|x_A|^2}+\frac{1}{|y_B|^2}$

$=\frac{(3m+1)^2}{(6m+1)^2}+\frac{1}{(6m+1)^2}$
$=\frac{(3m+1)^2+1}{(6m+1)^2}$

Để $h$ max thì $\frac{1}{h^2}$ min 

Hay $\frac{(3m+1)^2+1}{(6m+1)^2}$ min

Áp dụng BĐT Bunhiacopxky:

$[(3m+1)^2+1][2^2+(-1)^2]\geq [2(3m+1)+(-1)]^2=(6m+1)^2$
$\Rightarrow 5[(3m+1)^2+1]\geq (6m+1)^2$

$\Rightarrow \frac{1}{h^2}\geq \frac{1}{5}$

Giá trị này đạt tại $\frac{3m+1}{2}=\frac{1}{-1}$

$\Leftrightarrow m=-1$

20 tháng 12 2022

a: Thay x=1 và y=3 vào (d), ta đc:

m-1+2=3

=>m+1=3

=>m=2

b: Thay y=0 vào (d), ta đc:

x-1=0

=>x=1

Thay x=1 và y=0 vào (d1), ta được:

2*1+m-1=0

=>m=-1