K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

tao biết làm bài này từ lớp 7 rồi, lớp 9 cũng hỏi mấy câu này

4 tháng 8 2019

Đặt \(A=\frac{1}{\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d}}\)

\(=\frac{\sqrt{a}+\sqrt{d}-\left(\sqrt{b}+\sqrt{c}\right)}{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d}\right)\left(\sqrt{a}+\sqrt{d}-\left(\sqrt{b}+\sqrt{c}\right)\right)}\)

\(=\frac{\sqrt{a}+\sqrt{d}-\sqrt{b}-\sqrt{c}}{\left(\sqrt{a}+\sqrt{d}\right)^2-\left(\sqrt{b}+\sqrt{c}\right)^2}\)

\(=\frac{\sqrt{a}+\sqrt{d}-\sqrt{b}-\sqrt{c}}{a+2\sqrt{ad}+d-\left(b+2\sqrt{bc}+c\right)}\)

\(\frac{a}{b}=\frac{c}{d}\) \(\Rightarrow ad=bc\)

\(\Rightarrow A=\frac{\sqrt{a}-\sqrt{b}-\sqrt{c}+\sqrt{d}}{a+2\sqrt{bc}+d-b-2\sqrt{bc}-c}\)

\(=\frac{\sqrt{a}-\sqrt{b}-\sqrt{c}+\sqrt{d}}{a-b-c+d}\)

30 tháng 8 2020

Ta có : \(ad=bc;a,b,c,d>0\)

\(\Rightarrow2\sqrt{ad}=2\sqrt{bc}\)

Khi đó : \(\frac{1}{\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{d}}\) \(=\frac{1}{\left(\sqrt{a}+\sqrt{d}\right)+\left(\sqrt{b}+\sqrt{c}\right)}\)

\(=\frac{\left(\sqrt{a}+\sqrt{d}\right)-\left(\sqrt{b}+\sqrt{c}\right)}{\left[\left(\sqrt{a}+\sqrt{d}\right)+\left(\sqrt{b}+\sqrt{c}\right)\right].\left[\left(\sqrt{a}+\sqrt{d}\right)-\left(\sqrt{b}+\sqrt{c}\right)\right]}\)

\(=\frac{\sqrt{a}+\sqrt{d}-\sqrt{b}-\sqrt{c}}{\left(\sqrt{a}+\sqrt{d}\right)^2-\left(\sqrt{b}+\sqrt{c}\right)^2}\) \(=\frac{\sqrt{a}+\sqrt{d}-\sqrt{b}-\sqrt{c}}{a+d+2\sqrt{ad}-b-c-2\sqrt{bc}}\)

\(=\frac{\sqrt{a}+\sqrt{d}-\sqrt{b}-\sqrt{c}}{a+d-b-c}\) ( Do \(2\sqrt{ad}=2\sqrt{bc}\) )

HQ
Hà Quang Minh
Giáo viên
22 tháng 8 2023

\(a,a^{\dfrac{1}{3}}\cdot\sqrt{a}=a^{\dfrac{1}{3}}\cdot a^{\dfrac{1}{2}}=a^{\dfrac{5}{6}}\\ b,b^{\dfrac{1}{2}}\cdot b^{\dfrac{1}{3}}\cdot\sqrt[6]{b}=b^{\dfrac{1}{2}}\cdot b^{\dfrac{1}{3}}\cdot b^{\dfrac{1}{6}}=b^1\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 8 2023

\(c,a^{\dfrac{4}{3}}:\sqrt[3]{a}=a^{\dfrac{4}{3}}:a^{\dfrac{1}{3}}=a^{\dfrac{4}{3}-\dfrac{1}{3}}=a\\ d,\sqrt[3]{b}:b^{\dfrac{1}{6}}=b^{\dfrac{1}{3}}:b^{\dfrac{1}{6}}=b^{\dfrac{1}{3}-\dfrac{1}{6}}=b^{\dfrac{1}{6}}=\sqrt[6]{b}\)

26 tháng 6 2016

3a) ta có \(\frac{a^2}{a+b}=a-\frac{ab}{a+b}>=a-\frac{ab}{2\sqrt{ab}}=a-\frac{\sqrt{ab}}{2}\)

vì \(a,b>0,a+b>=2\sqrt{ab}nên\frac{ab}{a+b}< =\frac{ab}{2\sqrt{ab}}\)

tương tự \(\frac{b^2}{b+c}=b-\frac{bc}{b+c}>=b-\frac{bc}{2\sqrt{bc}}=b-\frac{\sqrt{bc}}{2}\)

tương tự \(\frac{c^2}{c+a}=c-\frac{ca}{c+a}>=c-\frac{ca}{2\sqrt{ca}}=c-\frac{\sqrt{ca}}{2}\)

cộng từng vế BĐT ta được \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}>=a+b+c-\frac{\sqrt{ab}}{2}-\frac{\sqrt{bc}}{2}-\frac{\sqrt{ca}}{2}=\frac{2a+2b+2c-\sqrt{ab}-\sqrt{bc}-\sqrt{ca}}{2}\left(1\right)\)

giả sử \(\frac{2a+2b+2c-\sqrt{ab}-\sqrt{bc}-\sqrt{ca}}{2}>=\frac{a+b+c}{2}\)

<=> \(2a+2b+2c-\sqrt{ab}-\sqrt{bc}-\sqrt{ca}>=a+b+c\)

<=> \(a+b+c-\sqrt{ab}-\sqrt{bc}-\sqrt{ca}>=0\)

<=> \(2a+2b+2c-2\sqrt{ab}-2\sqrt{bc}-2\sqrt{ca}>=0\)

<=> \(\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{a}-\sqrt{c}\right)^2>=0\)

(đúng với mọi a,b,c >0) (2)

(1),(2)=> \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}>=\frac{a+b+c}{2}\left(đpcm\right)\)