K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2021

TL ;

\(a=180;60\)

\(b=12;36\)

HT

26 tháng 8 2021

đặt a=12x,b=12y(x<y và ucln(x,y)=1 và x,y<1) do bcnn(a,b)=180 nên 180chia hết cho a và b nên 180 chia hết cho 12xy suy ra 15 chia hết cho xy mà x,y>1 và x<y nên x=3,y=5 suy ra a=36,b=60

5 tháng 11 2021
☺😊🥰😇😊😉🙃😂😍🤩😗☺☺😙😙
25 tháng 2 2016

=>a=12m

b=12n (ưcln(m;n)=1;m;n thuộc N

tích ab=180*12=2160

=>12n12m=2160

=>144mn=2160

=>mn=15

mà ƯCLN(m;n)=1

=>(m;n)=(5;3);(3;5)

=>(a;b)=(60;36);(36;60)

3 tháng 8 2021

Ta có (a;b).[a;b] = a.b

\(\Rightarrow ab=12.180=2160\)

Lại có (a;b) = 12 đặt \(\hept{\begin{cases}a=12m\\b=12n\end{cases}}\left(m< n;m;n\inℕ^∗\right)\)

Khi đó ab = 1260 

\(\Leftrightarrow12m.12n=2160\)

\(\Leftrightarrow m.n=15\)

Lập bảng xét các trường hợp 

m515
n31
a60180
b3612(loại)

Vậy a = 60 ; b = 36 

4 tháng 8 2021

24 và 36

DD
22 tháng 1 2021

\(ab=\left(a,b\right).\left[a,b\right]=12.144=1728\Rightarrow a=\frac{1728}{b}\).

\(a=b+12\Rightarrow\frac{1728}{b}=b+12\Rightarrow b=36\)(vì \(b\inℕ\)

\(b=36\Rightarrow a=48\).

15 tháng 10 2023

 Trước tiên, ta cần chứng minh 2 bổ đề sau:

 Bổ đề 1: Cho 2 số tự nhiên \(a,b\) khác 0. Khi đó  \(ƯCLN\left(a,b\right).BCNN\left(a,b\right)=a.b\)

 Bổ đề 2: Cho 2 số tự nhiên \(a,b\) khác 0. Khi đó:\(ƯCLN\left(a,b\right)+BCNN\left(a,b\right)\ge a+b\)

 Chứng minh:

 Bổ đề 1: Đặt \(\left(a,b\right)=1\) (từ nay ta sẽ kí hiệu \(\left(a,b\right)=ƯCLN\left(a,b\right)\) và \(\left[a;b\right]=BCNN\left(a,b\right)\) cho gọn) \(\Rightarrow\left\{{}\begin{matrix}a=dk\\b=dl\end{matrix}\right.\left(\left(k,l\right)=1\right)\)

  Nên \(\left[a,b\right]=dkl\) \(\Rightarrow\left(a;b\right)\left[a;b\right]=dk.dl=ab\). Ta có đpcm.

 Bổ đề 2: Vẫn giữ nguyên kí hiệu như ở chứng minh bổ đề 1. Ta có \(k\ge1,l\ge1\) nên \(\left(k-1\right)\left(l-1\right)\ge0\)

 \(\Leftrightarrow kl-k-l+1\ge0\)

 \(\Leftrightarrow kl+1\ge k+l\)

 \(\Leftrightarrow dkl+d\ge dk+dl\)

 \(\Leftrightarrow\left[a,b\right]+\left(a,b\right)\ge a+b\) (đpcm)

Vậy 2 bổ đề đã được chứng minh.

a) Áp dụng bổ đề 1, ta có \(ab=\left(a,b\right)\left[a,b\right]=15.180=2700\) và \(a+b\le\left(a,b\right)+\left[a,b\right]=195\). Do \(b\ge a\) \(\Rightarrow a^2\le2700\Leftrightarrow a\le51\)

 Mà \(15|a\) nên ta đi tìm các bội của 15 mà nhỏ hơn 51:

  \(a\in\left\{15;30;45\right\}\)

 Khi đó nếu \(a=15\) thì \(b=180\) (thỏa)

 Nếu \(a=30\) thì \(b=90\) (loại)

 Nếu \(a=45\) thì \(b=60\) (thỏa)

 Vậy có 2 cặp số a,b thỏa mãn ycbt là \(15,180\) và \(45,60\)

Câu b làm tương tự.

15 tháng 10 2023

 Ko bt