giải pt \(\left(x-3\right)^2+\left(x-4\right)^3=1\) ( ) này trị tuyệt đối nha các cậu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`|1/x+3|+|1/x-3|=1+|1/x^2-9|`
`<=>|1/x+3|+|1/x-3|=|(1/x-3)(1/x+3)|+1`
`<=>|1/x+3|-1=|(1/x-3)(1/x+3)|-|1/x-3|`
`<=>|1/x+3|-1=|(1/x-3)|(|1/x+3|-1)`
`<=>(|1/x+3|-1)(|1/x-3|-1)=0`
`+)|1/x+3|=1`
`<=>` $\left[ \begin{array}{l}\dfrac1x+3=1\\\dfrac1x+3=-1\end{array} \right.$
`<=>` $\left[ \begin{array}{l}\dfrac1x+2=0\\\dfrac1x+4=0\end{array} \right.$
`<=>` $\left[ \begin{array}{l}2x+1=0\\4x+1=0\end{array} \right.$
`<=>` $\left[ \begin{array}{l}x=-\dfrac12\\x=-\dfrac14\end{array} \right.$
`+)|1/x-3|=1`
`<=>` $\left[ \begin{array}{l}\dfrac1x-3=1\\\dfrac1x-3=-1\end{array} \right.$
`<=>` $\left[ \begin{array}{l}\dfrac1x-4=0\\\dfrac1x-2=0\end{array} \right.$
`<=>` $\left[ \begin{array}{l}4x-1=0\\2x-1=0\end{array} \right.$
`<=>` $\left[ \begin{array}{l}x=\dfrac12\\x=\dfrac14\end{array} \right.$
Vậy `S={1/2,-1/2,1/4,-1/4}`
ĐKXĐ: ...
\(\Leftrightarrow\left|\frac{2m+3}{m+1}\right|=\left|2m+3\right|\)
\(\Leftrightarrow\left|2m+3\right|\left(\frac{1}{\left|m+1\right|}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left|2m+3\right|=0\\\frac{1}{\left|m+1\right|}=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2m+3=0\\m+1=1\\m+1=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=-\frac{3}{2}\\m=0\\m=-2\end{matrix}\right.\)
\(\frac{4}{5}-|x-\frac{1}{6}|=\frac{2}{3}\)
\(\Rightarrow|x-\frac{1}{6}|=\frac{2}{15}\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{6}=\frac{2}{15}\\x-\frac{1}{6}=-\frac{2}{15}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{3}{10}\\x=\frac{1}{30}\end{cases}}\)
Vậy.....
Ta có: \(\dfrac{\left(x+3\right)\left(x-3\right)}{3}+2=x\left(1-x\right)\)
\(\Leftrightarrow\dfrac{x^2-9}{3}+\dfrac{6}{3}=\dfrac{3x\left(1-x\right)}{3}\)
\(\Leftrightarrow x^2-9+6=3x-3x^2\)
\(\Leftrightarrow x^2-3-3x+3x^2=0\)
\(\Leftrightarrow4x^2-3x-3=0\)
\(\Delta=9-4\cdot4\cdot\left(-3\right)=9+48=57\)
Vì \(\Delta>0\) nên phương trình có hai nghiệm phân biệt là
\(\left\{{}\begin{matrix}x_1=\dfrac{3-\sqrt{57}}{8}\\x_2=\dfrac{3+\sqrt{57}}{8}\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{3-\sqrt{57}}{8};\dfrac{3+\sqrt{57}}{8}\right\}\)
cả 2 pt đều giải theo kiểu cái đầu nhóm với cái cuối, 2 cái ở giữa nhóm với nhau. sau đó giải theo cách đặt ẩn phụ
1) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=0\)
\(\Leftrightarrow\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]-24=0\)
\(\Leftrightarrow\left(x^2+5x+2x+10\right)\left(x^2+4x+3x+12\right)-24=0\)
\(\Leftrightarrow\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24=0\)
Đặt \(x^2+7x=a\), nên ta có :
\(\left(a+10\right)\left(a+12\right)-24=0\)
\(\Leftrightarrow\left(x+11-1\right)\left(x+11+1\right)-24=0\)
\(\Leftrightarrow\left[\left(x+11\right)^2-1\right]-24=0\)
\(\Leftrightarrow\left(x+11\right)^2-25=0\)
\(\Leftrightarrow\left(x+11-5\right)\left(x+11+5\right)=0\)
\(\Leftrightarrow\left(x+6\right)\left(x+16\right)=0\Leftrightarrow\orbr{\begin{cases}x=-6\\x=-16\end{cases}}\)
x=4, tao tính nhẩm cũng ra
pt trên có 2 kết quả
x=3 hoặc 4