K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2017

Lý thuyết: Các trường hợp đồng dạng của tam giác | Lý thuyết và Bài tập Toán 8 có đáp án

Xét Δ ABC,Δ A'B'C' có A'B'/AB = A'C'/AC = B'C'/BC = 2/4 = 2,5/5 = 3/6 = 1/2.

⇒ Δ ABC ∼ Δ A'B'C' ( c - c - c )

23 tháng 7 2017

Lý thuyết: Các trường hợp đồng dạng của tam giác | Lý thuyết và Bài tập Toán 8 có đáp án

Xét Δ ABC,Δ A'B'C' có A'B'/AB = A'C'/AC = B'C'/BC = 2/4 = 2,5/5 = 3/6 = 1/2.

⇒ Δ ABC ∼ Δ A'B'C' ( c - c - c )

20 tháng 4 2022

undefined

a) có BE là tia p/g của góc ABC

       => góc B1 = góc B2 = góc ABC/2 = 600 /2 = 300

  có △ABC vuông tại A => △ABE vuông tại A

         EH⊥BC=> △HBE vuông tại H

Xét △ vuông ABE và △vuông HBE có

             góc B1 = góc B2

                    BE chung

=>△ vuông ABE =△vuông HBE ( cạnh huyền - góc nhọn)

b) có △ABE vuông tại A=> góc B1 + góc E1 = 900

                                         góc E1 = 600   ( vì góc B1 = 300)

có △ vuông ABE =△vuông HBE

    => góc E1 = góc E2 

mà HK//BE => góc E1 = góc K1     (ĐV)

                       và góc E2 = góc H1 (SLT)

=> góc E1 = góc E2 = góc K1=góc H1 = 600

 => △HEK đều

c) có góc E1 = góc E2 ; góc E3 = góc E4

  =>góc E1 +góc E4 = góc E2 + góc E3

=> góc BEM= góc BEC

Xét △BEM và △ BEC có

             góc B1 = góc B2

                   BE chung

          góc BEM= góc BEC

=> △BEM = △ BEC (g.c.g)

=>BM=BC

=>△BMC cân tại B

trong △BMC có BN là đường p/g xuất phát từ đỉnh B

lại có △BMC cân tại B

=> BN cũng là đường trung tuyến xuất phát từ đỉnh B

=> N là trung điểm của MC

=> NM=NC

1 tháng 1 2020

Ta có Δ ABC ∼ Δ A'B'C'. Khi đó tỉ số đồng dạng là

A'B'/AB = A'C'/AC = B'C'/BC = 2/4 = 2,5/5 = 3/6 = 1/2.

22 tháng 10 2016

Ta có hình vẽ:

A B C D 80

Ta có: ADC + ADB = 180o (kề bù)

=> ADC + 80o = 180o

=> ADC = 180o - 80o = 100o

Vì AD là phân giác của góc A nên \(CAD=DAB=\frac{CAB}{2}\)

Xét Δ ACD có: CAD + ADC + ACD = 180o

=> \(\frac{CAB}{2}\) + 100o + ACD = 180o

=> \(\frac{CAB}{2}\) + ACD = 180o - 100o = 80o (1)

Xét Δ ADB có: ADB + DAB + ABD = 180o

=> 80o + \(\frac{CAB}{2}\) + ABC = 180o

=> \(\frac{CAB}{2}\) + ABC = 180o - 80o = 100o (2)

Từ (1) và (2) \(\Rightarrow\left(\frac{CAB}{2}+ABC\right)-\left(\frac{CAB}{2}+ACD\right)=100^o-80^o\)

=> ABC - ACD = 20o

=> \(\frac{3}{2}ACD-ACD=20^o\)

\(\Rightarrow\frac{1}{2}ACD=20^o\Rightarrow ACD=20^o:\frac{1}{2}=40^o\)

=> ABC = 20o + 40o = 60o

Lại có: ABC + ACD + CAB = 180o

=> 60o + 40o + CAB = 180o

=> 100o + CAB = 180o

=> CAB = 180o - 100o = 80o

Vậy CAB = 80o; ABC = 60o; ACB = ACD = 40o

27 tháng 7 2017

bạn làm đúng rồi đóvui

Giúp mik vs các bạn ơi

a: Xét ΔABM và ΔCDM có 

MA=MC

\(\widehat{AMB}=\widehat{CMD}\)

MB=MD

Do đó: ΔABM=ΔCDM

b: Xét tứ giác ABCD có 

M là trung điểm của AC

M là trung điểm của BD

Do đó: ABCD là hình bình hành

Suy ra: AB//CD

a) Ta có: ΔABC vuông tại A(gt)

nên \(\widehat{B}+\widehat{C}=90^0\)(hai góc nhọn phụ nhau)

\(\Leftrightarrow\widehat{C}+60^0=90^0\)

hay \(\widehat{C}=30^0\)

Vậy: \(\widehat{C}=30^0\)

a) Xét ΔABC có \(\widehat{C}< \widehat{B}< \widehat{A}\left(30^0< 60^0< 90^0\right)\)

mà cạnh đối diện với góc C là cạnh AB

và cạnh đối diện với góc B là cạnh AC

và cạnh đối diện với góc A là cạnh BC

nên AB<AC<BC(đpcm)

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

c: ΔABH vuông tại H

mà HE là đường cao

nên AE*AB=AH^2

ΔACH vuông tại H có HF là đường cao

nên AF*AC=AH^2=AE*AB