Có bao nhiêu số nguyên dương m sao cho đường thẳng y = x + m x cắt đồ thị hàm số y = 2 x − 1 x + 1 tại hai điểm phân biệt A, B và A B ≤ 4
A. 7
B. 6
C. 1
D. 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Phương trình hoành độ giao điểm của )C) và(d) là
x + 2 x = x + m ⇔ x ≠ 0 x 2 + m − 1 x − 2 = 0 *
Để (C) cắt (d) tại 2 điểm phân biệt ⇔ * có 2 nghiệm phân biệt khác 0 ⇔ m ∈ ℝ
Khi đó, gọi A x 1 ; x 1 + 1 ; B x 2 ; x 2 + m ⇒ x 1 + x 2 = 1 − m là tọa độ giao điểm của (C) và(d)
Ta có: A B → = x 2 − x 1 ; x 2 − x 1 ⇒ u A B → = 1 ; 1 ; trung điểm AB là: I 1 − m 2 ; 1 + m 2
m = 0 ⇒ M , A , B thẳng hang (loại m = 0 )
Phương trình trung trực là: x + y − 1 = 0
Do M ∈ d ⇒ Δ M A D luôn cân tại M
Kết hợp với m ∈ ℤ và có 2018 giá trị m cần tìm
Chọn C.
Phương pháp
Xét phương trình hoành độ giao điểm.
Đường thẳng cắt đồ thị (C) tại hai điểm phân biệt nếu phương trình hoành độ giao điểm có hai nghiệm phân biệt.
Cách giải:
ĐKXĐ: x ≠ 1
Xét phương trình hoành độ giao điểm x - 1 x + 1 = -x + m (*)
Với x ≠ -1 thì (*) ⇔ x - 1 = (x+1)(-x+m)
Đường thẳng y = -x + m cắt đồ thị tại hai điểm phân biệt ⇔ phương trình (**) có hai nghiệm phân biệt khác -1.
Vậy m ∈ ℝ
Thay y = 3 vào phương trình đường thẳng d 2 ta được − x − 1 = 3 ⇔ x = − 4
Suy ra tọa độ giao điểm của d 1 v à d 2 là (−4; 3)
Thay x = − 4 ; y = 3 vào phương trình đường thẳng d 1 ta được:
2 ( m − 2 ) . ( − 4 ) + m = 3 ⇔ − 7 m + 16 = 3 ⇔ m = 13 7
Vậy m = 13 7
Đáp án cần chọn là: D
Chọn C.
Phương pháp: Sử dụng phương trình hoành độ giao điểm và định lý Viet.
Cách giải: Phương trình hoành độ giao điểm là
Vì a,c là nghiệm của (*) nên theo định lý Viet ta có:
Đáp án là D