K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2019

30 tháng 1 2019

20 tháng 11 2017

Chọn B

Gọi H là trọng tâm tam giác ABC, khi đó

Góc giữa cạnh bên và mặt đáy là góc 

10 tháng 11 2018

Phương pháp:

+ Sử dụng định nghĩa để tìm góc giữa hai mặt phẳng (P) và (Q):

 khi đó góc giữa (P) và (Q) chính là góc giữa hai đường thẳng a và b.

+ Diện tích tam giác đều cạnh a được tính theo công thức S =  a 2 3 4

+ Tính thể tích V =  1 3 S.h với S là diện tích đáy, h là chiều cao hình chóp.

Cách giải:

Gọi E là trung điểm của BC, O là trọng tâm tam giác ABC => SO ⊥ (ABCD)  (do S.ABC là hình chóp đều)

Suy ra AE ⊥ BC (do ∆ ABC đều) và SE ⊥ BC (do  ∆ SBC cân tại S)

Ta có  nên góc giữa (ABC) và (SBC) là SEA.

Từ giả thiết suy ra SEA = 60 ° .

Tam giác ABC đều cạnh a

Xét tam giác SOE vuông tại O (do SO ⊥ (ABC)=> SO ⊥ AE), ta có:

Diện tích tam giác đều ABC là: 

Vậy 

Chọn A

26 tháng 6 2017

Đáp án B

31 tháng 10 2018

16 tháng 12 2017

Chọn B.

Gọi M là trung điểm của BC, 

Suy ra H là tâm của tam giác đáy AC

Suy ra  suy ra SAH vuông cân tại H

Suy ra SH =AH

22 tháng 11 2018

ĐÁP ÁN: A

2 tháng 2 2019

Đáp án A

6 tháng 12 2019

Đáp án D

Gọi H là tâm của tam giác ABC. Trong (SBC), kẻ SI vuông góc BC.

Do góc giữa mặt bên và mặt đáy là 600 suy ra