Chọn ngẫu nhiên một số tự nhiên A có bốn chữ số. Gọi N là số thỏa mãn 3 N = A . Xác suất để N là số tự nhiên bằng:
A. 1 4500
B. 0
C. 1 2500
D. 1 3000
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Ký hiệu B là biến cố lấy được số tự nhiên A thỏa mãn yêu cầu bài toán.
Ta có 3N = A <=> N = log3A
Để N là số tự nhiên thì A = 3m (m ∈ N)
Những số A dạng có 4 chữ số gồm 37 = 2187 và 38 = 6561
Chọn đáp án B
Phương pháp
Chia các TH sau:
TH1: a<b<c.
TH2: a=b<c.
TH3: a<b=c.
TH4: a=b=c.
Cách giải
Gọi số tự nhiên có 3 chữ số là a b c ¯ (0≤a,b,c≤9, a≠0).
=> S có 9.10.10=900 phần tử. Chọn ngẫu nhiên một số từ S => n(Ω)=900
Gọi A là biến cố: “Số được chọn thỏa mãn a≤b≤c”.
TH1: a<b<c. Chọn 3 số trong 9 số từ 1 đến 9, có duy nhất một cách xếp chúng theo thứ tự tăng dần từ trái qua phải nên TH này có C 9 3 số thỏa mãn.
TH2: a=b<c, có C 9 2 số thỏa mãn.
TH3: a<b=c có C 9 2 số thỏa mãn.
TH4: a=b=c có 9 số thỏa mãn.
⇒ n ( A ) = C 9 3 + 2 C 9 2 + 9 = 165
Vậy P ( A ) = 11 60 .
Đáp án C
Gọi số có 4 chữ số có dạng (a, b, c, d là các chữ số, ).
Số phần tử của không gian mẫu
Gọi A là biến cố “Chọn được số lớn hơn 2500”.
Trường hợp 1:
Chọn a: từ 3, 4,…, 9 → có 7 cách chọn.
Chọn b: khác a → có 9 cách chọn.
Chọn c: khác a, b → có 8 cách chọn.
Chọn d: khác a, b, c → có 7 cách chọn.
Vậy trường hợp này có số.
Trường hợp 2:
Chọn a: → có 1 cách chọn.
Chọn b: từ 6, 7, 8, 9 → có 4 cách chọn.
Chọn c: khác a, b → có 8 cách chọn.
Chọn d: khác a, b, c → có 7 cách chọn.
Vậy trường hợp này có số.
Trường hợp 3:
Chọn a: → có 1 cách chọn.
Chọn b: → có 1 cách chọn.
Chọn c: từ 1, 3, 4, 6, 7, 8, 9 → có 7 cách chọn.
Chọn d: khác a, b, c → có 7 cách chọn.
Vậy trường hợp này có số.
Trường hợp 4:
Chọn a: → có 1 cách chọn.
Chọn b: → có 1 cách chọn.
Chọn c: → có 1 cách chọn.
Chọn d: từ 1, 3, 4, 6, 7, 8, 9 → có 7 cách chọn.
Vậy trường hợp này có số.
Như vậy
Đáp án C
Gọi số có 4 chữ số có dạng abcd ¯ (a, b, c, d là các chữ số, a ≠ 0 ).
Số phần tử của không gian mẫu n(S) = 9.9.8.7 = 4536
Gọi A là biến cố “Chọn được số lớn hơn 2500”.
Chọn a: từ 3, 4,…, 9 → có 7 cách chọn.
Chọn b: khác a → có 9 cách chọn.
Chọn c: khác a, b → có 8 cách chọn.
Chọn d: khác a, b, c → có 7 cách chọn.
Vậy trường hợp này có 7.9.8.7 = 3528 số.
Chọn a: a = 2 → có 1 cách chọn.
Chọn b: từ 6, 7, 8, 9 → có 4 cách chọn.
Chọn c: khác a, b → có 8 cách chọn.
Chọn d: khác a, b, c → có 7 cách chọn.
Vậy trường hợp này có 1.4.8.7 = 224 số.
Chọn a: a = 2 → có 1 cách chọn.
Chọn b: b = 5 → có 1 cách chọn.
Chọn c: từ 1, 3, 4, 6, 7, 8, 9 → có 7 cách chọn.
Chọn d: khác a, b, c → có 7 cách chọn.
Vậy trường hợp này có 1.1.7.7 = 49 số.
Chọn a: a = 2 → có 1 cách chọn.
Chọn b: b = 5 → có 1 cách chọn.
Chọn c: c = 0 → có 1 cách chọn.
Chọn d: từ 1, 3, 4, 6, 7, 8, 9 → có 7 cách chọn.
Vậy trường hợp này có 1.1.1.7 = 7 số.
Như vậy n A = 3528 + 224 + 49 + 7 = 3808 ⇒ P A = 3808 4536 = 68 81 .
Chọn B
Số phần tử của không gian mẫu
Gọi biến cố A” Chọn được một số thỏa mãn ”.
Vì mà nên trong các chữ số sẽ không có số 0.
TH1: Số được chọn có chữ số giống nhau có 9 số.
TH2: Số được chọn tạo bới hai chữ số khác nhau.
Số cách chọn ra 2 chữ số khác nhau từ 9 chữ số trên là: C 9 2 .
Mỗi bộ 2 chữ số được chọn tạo ra 2 số thỏa mãn yêu cầu.
Vậy có 2. C 9 2 số thỏa mãn.
TH3: Số được chọn tạo bởi ba chữ số khác nhau.
Số cách chọn ra 3 chữ số khác nhau từ 9 chữ số trên là: C 9 3 .
Mỗi bộ 3 chữ số được chọn chỉ tạo ra một số thỏa mãn yêu cầu.
Vậy có C 9 3 số thỏa mãn.
Vậy
Xác suất của biến cố A là: .
Đáp án là A