Chu vi của một đa giác n cạnh là 158, số đo các cạnh đa giác lập thành một cấp số cộng với công sai d = 3. Biết cạnh lớn nhất có độ dài là 44. Tính số cạnh của đa giác.
A. 6
B. 4
C. 9
D. 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Ta sắp xếp các cạnh giá trị u 1 ; … u n tăng dần theo cấp số cộng là 3. Khi đó ta có:
S n = 158 u n = 44 ⇔ u 1 + 44 . n 2 = 158 u 1 + 3 n − 1 = 44 ⇔ u 1 = 47 − 3 n 47 − 3 n + 44 . n = 316 *
* ⇔ 3 n 2 − 91 n + 316 = 0 ⇔ n = 4 T M n = 79 3 L
Đáp án B
Gọi số cạnh đa giác là n ta có
44 n − 3 1 + 2 + ... + n − 1 = 158 ⇔ 44 n − 3 n n − 1 2 = 158
⇔ 3 n 2 − 91 n + 316 = 0 ⇒ n = 4
- Gọi độ dài các cạnh của đa giác trên là:\(a_1,a_2,...,a_n\left(cm\right)\left(a_1< a_2< ...< a_n\right)\left(n\in N\cdot,n>2\right)\)
- Vì độ dài các cạnh của đa giác trên lập thành 1 cấp số cộng nên ta có:
\(\left\{{}\begin{matrix}a_n=a_1+\left(n-1\right)d\\a_1+a_2+...+a_n=na_1+\dfrac{n\left(n-1\right)}{2}d\end{matrix}\right.\)
Mặt khác, theo đề bài ta có: \(\left\{{}\begin{matrix}a_n=15\left(cm\right)\\d=3\\a_1+a_2+...+a_n=45\left(cm\right)\end{matrix}\right.\)
Do đó: \(\left\{{}\begin{matrix}a_1+3\left(n-1\right)=15\left(1\right)\\na_1+\dfrac{3n\left(n-1\right)}{2}=45\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Rightarrow na_1+3n\left(n-1\right)=15n\left(3\right)\)
Lấy \(\left(3\right)-\left(2\right)\), ta được: \(\dfrac{3n\left(n-1\right)}{2}=15n-45\)
\(\Leftrightarrow3n^2-3n+90-30n=0\)
\(\Leftrightarrow n^2-11n+30=0\)
\(\Leftrightarrow\left[{}\begin{matrix}n=6\\n=5\end{matrix}\right.\)
*Với \(n=6\). Từ (1) ta có: \(a_1=15-3\left(n-1\right)=15-3\left(6-1\right)=0\) (loại)
*Với \(n=5\). Từ (1) ta có: \(a_1=15-3\left(n-1\right)=15-3\left(5-1\right)=3\left(cm\right)\)
Vậy số cạnh của đa giác đó là 5.
Chọn đáp án D
Giả sử đa giác đã cho có n cạnh thì chu vi đa giác đó là S n = u 1 + u 2 + . . + u n với u 1 , u 2 , . . , u n lần lượt là số đo các cạnh của đa giác 0 < u 1 < u 2 < . . . < u n = 44 c m
Suy ra S n = u 1 + u n . n 2
Do n ∈ ℕ nên u 1 + 44 là ước nguyên dương của 316
Mà 316 = 2 7 . 79 nên u 1 = 44 ∈ 2 ; 4 ; 79 ; 158 ; 316
* Với u 1 + 44 = 2 ⇔ u 1 = - 42 < 0 (Loại).
* Với u 1 + 44 = 4 ⇔ u 1 = - 40 < 0 (Loại).
* Với u 1 + 44 = 79 ⇔ u 1 = 35 ⇔ n = 4
* Với u 1 + 44 = 158 ⇔ u 1 = 114 ⇔ n = 2 (Loại do số cạnh của một đa giác luôn lớn hơn 2, tức là n > 2 , n ∈ ℕ ) .
* Với u 1 + 44 = 316 ⇔ u 1 = 272 ⇔ n = 1 (Loại).
Vậy đa giác đã cho có 4 cạnh.
Chọn C.
Gọi x, y, z theo thứ tự tăng dần của độ dài ba cạnh của tam giác.
Chu vi của tam giác: x + y + z = 3a (1)
Tính chất của cấp số cộng có x + z = 2y (2)
Vì tam giác vuông nên có: x2 + y2 = z2 (3)
Thay (2) vào (1) được 3y = 3a hay y = a, thay y = a vào (2) được: x + z = 2a hay x = 2a - z
Thay x và y vào (3) được: (2a – z)2 + a2 = z2 ⇔ 5a2 – 4az = 0 ⇔
Độ dài ba cạnh của tam giác thỏa yêu cầu:
Vậy độ dài cạnh lớn nhất của tam giác là
Đáp án B