Cho khối lăng trụ ABC.A’B’C’. Gọi P là trọng tâm tam giác A’B’C’ và Q là trung điểm của BC. Tính tỉ số thể tích giữa hai khối tứ điện B’PAQ và A’ABC
A. 1 2 .
B. 2 3 .
C. 3 4 .
D. 1 3 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Phương pháp giải:
Dựng hình, xác định khoảng cách giữa hai đường thẳng chéo nhau để tính chiều cao lăng trụ
Lời giải: Gọi M là trung điểm của BC.
Ta có
Kẻ => MH là đoạn vuông góc chung của BC, AA’
Mà
Xét tam giác vuông AA’G có :
Vậy thể tích cần tính là:
a) Ta có ABC.A'B'C' là hình lăng trụ nên \(\Delta ABC = \Delta A'B'C'\) suy ra AG = A'G'.
Lại có (ABC) // (A'B'C'), giao tuyến của mp(AGG'A') với (ABC) và (A'B'C') lần lượt là AG, A'G' suy ra AG // A'G'.
Như vậy , tứ giác AGG'A' có AG = A'G', AG // A'G' là hình bình hành.
b) AGG'A' là hình bình hành suy ta AA' // GG'.
Lại có AA' // CC' (do ABC.A'B'C' là hình lăng trụ).
Mặt phẳng (AGC) // (A'G'C') suy ra AGC.A'G'C' là hình lăng trụ.
Do tam giác ABC đều cạnh a và M là trung điểm BC cho nên A M ⊥ B C và A M = a 3 2 .
A M ⊥ B C và A A ' ⊥ B C ⇒ A ' M ⊥ B C
⇒ Góc giữa hai mặt phẳng (A’BC) và (ABC) là A ' M A ^ = 60 o
Tam giác A’AM vuông góc tại A nên A A ' = A M . tan 60 o = a 3 2 . 3 = 3 a 2
Diện tích hình chữ nhật BB’C’C là S B B ' C ' C = B B ' . B C = 3 a 2 2
A M ⊥ B C và A M ⊥ B B ' ⇒ A M ⊥ B B ' C ' C
Thể tích khối chóp A.BB’C’C là: V = 1 3 . S B B ' C ' C . A M = 1 3 . 3 a 2 2 . a 3 2 = a 3 3 4 (đvtt).
Đáp án A
Đáp án A.
Gọi M là trung điểm của B ' C ' ⇒ A , M , P thẳng hàng.
Do đó S P A Q = 1 2 S A A ' M Q .
V B ' . P A Q = 1 2 V B ' . A A ' M Q . Dễ thấy
V B ' . A B Q = 1 3 V B ' A ' M . B A Q ⇒ V B ' . A A ' M Q = 2 3 V B ' A ' M . B A Q = 2 3 . 1 2 V A ' B ' C ' . A B C
⇒ V P A Q = 1 2 . 2 3 . 1 2 .3 V A ' . A B C = 1 2 V A ' A B C .