Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x − 3 1 = y 1 = z + 2 1 và điểm M 2 ; − 1 ; 0 . Gọi (S) là mặt cầu có tâm I thuộc đường thẳng d và tiếp xúc với mp (Oxy) tại điểm M. Hỏi có bao nhiêu mặt cầu thỏa
A. 2
B. 1
C. 0
D. Vô số
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A
Tìm giao điểm I từ hệ phương trình đường thẳng d và mặt phẳng (P). Viết phương trình đường thẳng IM. Gọi tọa độ điểm M theo tham số của đường thẳng IM rồi xác định tham số đó từ phương trình I M = 4 14
Chọn A
Vì A thuộc nên A (1+2t;1-t;-1+t).
Vì B thuộc nên B (-2+3t';-1+t';2+2t').
Thay vào (3) ta được t=1, t'=2 thỏa mãn.
Chọn B
Vậy M(3;−4;−2) là giao điểm của đường thẳng d và mặt phẳng (P).
Chọn C
Đường thẳng d đi qua điểm M(-2;1;3) và có vectơ chỉ phương
Chọn C
Đường thẳng d đi qua điểm M(-2;1;3) và có vectơ chỉ phương
Chọn C
Đường thẳng d đi qua điểm M(-2;1;3) và có vectơ chỉ phương u → 2 ; - 1 ; 3 .
Đáp án B
Vậy M(3;−4;−2) là giao điểm của đường thẳng d và mặt phẳng (P).
Chọn A
Gọi I = d ∩ Δ. Do I ∈ Δ nên I (2t + 1; t – 1; -t).
từ đó suy ra d có một vectơ chỉ phương là và đi qua M (2 ; 1 ; 0) nên có phương trình
Đáp án B