Cho a, b là các số thực dương thỏa mãn log 2 a + log 2 b = 0. Khẳng định nào sau đây đúng?
A. a + b = 2
B. a + b = 1
C. ab=1
D. ab=2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(log_a\left(a^3b^2\right)=log_aa^3+log_ab^2=3+2\cdot log_ab\)
=>B
Chọn D
Cho ta thấy logab= 2 và logba= ½. Do vậy logba< 1< logab
Chọn D
Cách 1: Cho a= 4; b= 2 ta thấy log24> 1> log42
Cách 2: Ta có: 1< a< b nên
c1:áp dụng bđt AM-GM:
\(a+b\ge2\sqrt{ab}\Rightarrow ab\le\left(\dfrac{a+b}{2}\right)^2=1008^2\)
=> đáp án A
c2: tương tự c1 . đáp án b
3.
\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{ab}{ab}}=2\)
Đáp án A
4.
\(a^2-a+1=\left(a-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\) ;\(\forall a\)
Đáp án A
Đáp án C
log a a b = log a 1 ⇔ 1 + log a b = 0 ⇔ log a b = − 1
Đáp án là C