Trong mặt phẳng O x y , cho điểm A 2 ; 1 và véc tơ a → 1 ; 3 . Phép tịnh tiến theo vectơ a → biến điểm A thành điểm A ' . Tọa độ điểm A ' là
A. A ' − 1 ; − 2 .
B. A ' 1 ; 2 .
C. A ' 4 ; 3 .
D. A ' 3 ; 4 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D
Giả sử (S): x2 + y2 + z2 - 2ax - 2by - 2cz + d = 0 (a2 + b2 + c2 - d > 0)
và tâm I (a;b;c) ∈ (P) => a + b - c - 3 = 0 (1)
(S) qua A và O nên
Cộng vế theo vế (1) và (2) ta suy ra b = 2. Từ đó, suy ra I (a; 2; a-1)
Chu vi tam giác OAI bằng 6 + √2 nên OI + OA + AI = 6 + √2
+ Với a = -1 => A (-1; 2; -2) => R = 3. Do đó:
+ Với a = 2 => I (2;2;1) => R = 3. Do đó:
Đáp án D.
( d ) : x - 1 2 = y - 2 - 1 = z 1 đi qua B(1;2;0) có vecto chỉ phương n d → = 2 ; - 1 ; 1
Với B A → = 1 ; - 1 ; 3 , vecto pháp tuyến của (P) là: B A → , u d → = 2 ; 5 ; 1
⇒ P : 2 x - 2 + 5 y - 1 + z - 3 = 0 ⇔ 2 x + 5 y + z - 12 = 0
Bán kính của mặt cầu cần tìm là d O , P = 2 30 5 .
Tham khảo:
a) Ta có: \(\overrightarrow {OA} = \left( {2;1} \right)\) ( do A(2; 1)) và \(\overrightarrow {OB} = \left( {3;3} \right)\) (do B (3; 3)).
Hai vectơ này không cùng phương (vì \(\frac{2}{3} \ne \frac{1}{3}\)).
Do đó các điểm O, A, B không cùng nằm trên một đường thẳng.
Vậy chúng không thẳng hàng.
b) Các điểm O, A, B không thẳng hàng nên OABM là một hình hành khi và chỉ khi \(\overrightarrow {OA} = \overrightarrow {MB} \).
Do \(\overrightarrow {OA} = \left( {2;1} \right),\quad \overrightarrow {MB} = \left( {3 - x;3 - y} \right)\) nên
\(\overrightarrow {OA} = \overrightarrow {MB} \Leftrightarrow \left\{ \begin{array}{l}2 = 3 - x\\1 = 3 - y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 2\end{array} \right.\)
Vậy điểm cần tìm là M (1; 2).