K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2017

Đáp án A

Phương pháp:

Sử dụng công thức tính đạo hàm bằng định nghĩa:  (nếu tồn tại giới hạn).

Cách giải: Ta có: 

1. Cho hs y=f(x) có đạo hàm thỏa mãn f'(6)=2. Tính giá trị biểu thức lim \(_{x-6}\)\(\dfrac{f\left(x\right)-f\left(6\right)}{x-6}\)2. Gọi d là tiếp tuyến của hs y=\(\dfrac{x-1}{x+2}\) tại điểm có hoàng độ bằng -3. Khi đó d tạo với 2 trục tọa độ 1 tam giác có diện tích là bao nhiêu?3. Cho lim \(_{x-2}\)\(\dfrac{\sqrt{3x+3}-m}{x-2}\)=\(\dfrac{a}{b}\)với m là số thực và \(\dfrac{a}{b}\)tối giản. Tính 2a-b4. Cho hàm số y=f(x) xác định và có...
Đọc tiếp

1. Cho hs y=f(x) có đạo hàm thỏa mãn f'(6)=2. Tính giá trị biểu thức lim \(_{x->6}\)\(\dfrac{f\left(x\right)-f\left(6\right)}{x-6}\)

2. Gọi d là tiếp tuyến của hs y=\(\dfrac{x-1}{x+2}\) tại điểm có hoàng độ bằng -3. Khi đó d tạo với 2 trục tọa độ 1 tam giác có diện tích là bao nhiêu?

3. Cho lim \(_{x->2}\)\(\dfrac{\sqrt{3x+3}-m}{x-2}\)=\(\dfrac{a}{b}\)với m là số thực và \(\dfrac{a}{b}\)tối giản. Tính 2a-b

4. Cho hàm số y=f(x) xác định và có đạo hàm trên tập số thực. Biết f'(1)=5 và f(1)=6. Tìm giới hạn lim \(_{x->1}\)\(\dfrac{f^2\left(x\right)-f\left(x\right)-30}{\sqrt{x}-1}\)

5. Cho tam giác ABC có 2 trung tuyến kẻ từ A đến B vuông góc với nhau. Khi đó tỉ số \(\dfrac{AC+BC}{AB}\)đạt giá trị lớn nhất bằng bao nhiêu(làm tròn đến hàng phần trăm)

6. Cho tứ diện ABCD có (ACD) vuông góc (BCD), AC=AD=BC=BD=a và CD=2x. Gọi I và J lần lượt là trung điểm của AB và CD. Với giá trị nào của x thì (ABC) vuông góc với (ABD)?

1
11 tháng 4 2021

1/ L'Hospital:

\(=\lim\limits_{x\rightarrow6}f'\left(x\right)=f'\left(6\right)=2\)

3/ \(=\lim\limits_{x\rightarrow2}\dfrac{\dfrac{3}{2\sqrt{3x+3}}}{1}=\dfrac{1}{2}\Rightarrow2a-b=0\)

4/ \(=\lim\limits_{x\rightarrow1}\dfrac{2f\left(x\right).f'\left(x\right)-f'\left(x\right)}{\dfrac{1}{2\sqrt{x}}}=\dfrac{2.6.5-5}{\dfrac{1}{2}}=110\)

2/ \(x_0=-3\Rightarrow y_0=\dfrac{-3-1}{-3+2}=\dfrac{-4}{-1}=4\)

\(y'=\dfrac{\left(x-1\right)'\left(x+2\right)-\left(x-1\right)\left(x+2\right)'}{\left(x+2\right)^2}=\dfrac{x+2-x+1}{\left(x+2\right)^2}=\dfrac{3}{\left(x+2\right)^2}\)

\(\Rightarrow y'\left(-3\right)=3\)

\(\Rightarrow pttt:y=3\left(x+3\right)+4=3x+13\)

\(x=0\Rightarrow y=13;y=0\Rightarrow x=-\dfrac{13}{3}\)

\(\Rightarrow S=\dfrac{1}{2}.\left|x\right|\left|y\right|=\dfrac{1}{2}.\dfrac{13}{3}.13=\dfrac{169}{6}\left(dvdt\right)\)

P/s: Câu 5,6 bỏ qua nhé, toi ngu hình học :b

11 tháng 4 2021

 cảm ơn bạn nhé =))

29 tháng 3 2019

NV
11 tháng 3 2022

\(2x.f'\left(x\right)-f\left(x\right)=x^2\sqrt{x}.cosx\)

\(\Leftrightarrow\dfrac{1}{\sqrt{x}}.f'\left(x\right)-\dfrac{1}{2x\sqrt{x}}f\left(x\right)=x.cosx\)

\(\Leftrightarrow\left[\dfrac{f\left(x\right)}{\sqrt{x}}\right]'=x.cosx\)

Lấy nguyên hàm 2 vế:

\(\int\left[\dfrac{f\left(x\right)}{\sqrt{x}}\right]'dx=\int x.cosxdx\)

\(\Rightarrow\dfrac{f\left(x\right)}{\sqrt{x}}=x.sinx+cosx+C\)

\(\Rightarrow f\left(x\right)=x\sqrt{x}.sinx+\sqrt{x}.cosx+C.\sqrt{x}\)

Thay \(x=4\pi\)

\(\Rightarrow0=4\pi.\sqrt{4\pi}.sin\left(4\pi\right)+\sqrt{4\pi}.cos\left(4\pi\right)+C.\sqrt{4\pi}\)

\(\Rightarrow C=-1\)

\(\Rightarrow f\left(x\right)=x\sqrt{x}.sinx+\sqrt{x}.cosx-\sqrt{x}\)

21 tháng 4 2017

23 tháng 10 2017

Theo bất đẳng thức Cauchy-Schwarz cho tích phân có:

Đáp án A

7 tháng 7 2018

\

24 tháng 12 2018

10 tháng 10 2019

Đáp án D

∫ 0 1 e x f x d x = ∫ 0 1 e x f ' x d x = ∫ 0 1 e x f ' ' x d x = k ≠ 0

Đặt 

u = e x d v = f ' x d x ⇒ d u = e x d x v = f x ⇒ ∫ 0 1 e x f ' x d x = e x f x 0 1 − ∫ 0 1 e x f x d x

⇒ k = e . f 1 − f 0 − k ⇒ e f 1 − f 0 = 2 k .

Đặt 

u = e x d v = f ' ' x d x ⇒ d u = e x d x v = f ' x ⇒ ∫ 0 1 e x f ' ' x d x = e x f ' x 0 1 − ∫ 0 1 e x f ' x d x

⇒ k = e . f ' 1 − f ' 0 − k ⇒ e . f ' 1 − f ' 0 = 2 k .

Vậy  e . f ' 1 − f ' 0 e . f 1 − f 0 = 2 k 2 k = 1

11 tháng 1 2017