K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2017

22 tháng 11 2018

23 tháng 6 2018

Đáp án D

5 tháng 9 2019

Đáp án D

Phương pháp

Biện luận để tìm trực tiếp nghiệm  z 1 , z 2 . Sử dụng giả thiết để tìm ra giá trị  m 0

Lời giải chi tiết.

Viết lại phương trình đã cho thành  

Nếu m 0 = 9 ⇒ z = 3  Hay phương trình chỉ có một nghiệm. (Loại)

Nếu m 0 < 9  thì phương trình đã cho có hai nghiệm thực  

Nếu  m 0 > 9 thì phương trình đã cho có hai nghiệm phức liên hợp là 

Khi đó 

Do đó  m 0 > 9  thỏa mãn yêu cầu bài toán.

Do bài toán đòi hỏi  m 0 ∈ ( 0 ; 20 )  nên

Vậy có 10 giá trị thỏa mãn.

7 tháng 4 2023

\(z^2-2\left(2m-1\right)z+m^2=0\)

Theo Vi - ét, ta có :

\(\left\{{}\begin{matrix}z_1+z_2=-\dfrac{b}{a}=2\left(2m-1\right)=4m-2\\z_1z_2=\dfrac{c}{a}=m^2\end{matrix}\right.\)

Ta có :

\(z^2_1+z_2^2=2\)

\(\Leftrightarrow\left(z_1+z_2\right)^2-2z_1z_2=2\)

\(\Leftrightarrow\left(4m-2\right)^2-2m^2-2=0\)

\(\Leftrightarrow16m^2-16m+4-2m^2-2=0\)

\(\Leftrightarrow14m^2-16m+2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=1\\m=\dfrac{1}{7}\end{matrix}\right.\)

10 tháng 4 2023

Ta có phương trình bậc hai trên tập số phức:

z^2 - 2(2m-1)z + m^2 = 0

Theo định lý giá trị trung bình, nếu z1 và z2 là nghiệm của phương trình trên, thì ta có:

z1 + z2 = 2(2m-1) và z1z2 = m^2

Từ phương trình z1^2 + z2^2 = 2, ta suy ra:

(z1+z2)^2 - 2z1z2 = 4

Thay z1+z2 và z1z2 bằng các giá trị đã biết vào, ta được:

(2(2m-1))^2 - 2m^2 = 4

Đơn giản hóa biểu thức ta có:

m^2 - 4m + 1 = 0

Suy ra:

m = 2 + √3 hoặc m = 2 - √3

Vậy, để phương trình có hai nghiệm phân biệt thỏa mãn z1^2 + z2^2 = 2, ta cần phải có m = 2 + √3 hoặc m = 2 - √3.

Kết luận: Có hai giá trị của m để phương trình có hai nghiệm phân biệt thỏa mãn z1^2 + z2^2 = 2, đó là m = 2 + √3 hoặc m = 2 - √3.

a: Khi m=1 thì pt sẽ là: x^2+4x-3=0

=>x=-2+căn 7 hoặc x=-2-căn 7

b: Δ=(2m-6)^2-4(m-4)

=4m^2-24m+36-4m+16

=4m^2-28m+52=(2m-7)^2+3>0

=>PT luôn có hai nghiệm pb

c: PT có hai nghiệm trái dấu

=>m-4<0

=>m<4

1 tháng 12 2021

Đk để pt trên có 2 nghiệm phân biệt x1,x2 : a>0 và denta>0

suy ra denta= (2m+1)^2-4.(m^2+1)>0

suy ra : m>3/4

Ta có P=x1x2/x1+x2=(m^2+1)/(2m+1)

 Ta có: P∈Z

⇒4P∈Z

⇒(4m^2+4)/2m+1=(2m-1)+5/2m+1∈Z

⇒2m+1=Ư(5)={−5;−1;1;5}

⇒m={−3;−1;0;2} 

Kết hợp đk m>3/4 ta được m=2

 

 

10 tháng 4 2021

a, Thay m = -1 vào phương trình trên ta được 

\(x^2+4x-5=0\)

Ta có : \(\Delta=16+20=36\)

\(x_1=\frac{-4-6}{2}=-5;x_2=\frac{-4+6}{2}=1\)

Vậy với m = -1 thì x = -5 ; x = 1 

b, Vì x = 2 là nghiệm của phương trình trên nên thay x = 2 vào phương trình trên ta được : 

\(4+8+3m-2=0\Leftrightarrow3m=-10\Leftrightarrow m=-\frac{10}{3}\)

Vậy với x = 2 thì m = -10/3 

c, Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)hay 

\(16-4\left(3m-2\right)=16-12m+8=4m+8>0\)

\(\Leftrightarrow8>-4m\Leftrightarrow m>-2\)

Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-4\\x_1x_2=\frac{c}{a}=3m-2\end{cases}}\)

\(\Leftrightarrow x_1+x_2=-4\Leftrightarrow x_1=-4-x_2\)(1) 

suy ra : \(-4-x_2+2x_2=1\Leftrightarrow-4+x_2=1\Leftrightarrow x_2=5\)

Thay vào (1) ta được : \(x_1=-4-5=-9\)

Mà \(x_1x_2=3m-2\Rightarrow3m-2=-45\Leftrightarrow3m=-43\Leftrightarrow m=-\frac{43}{3}\)

23 tháng 9 2019

Đáp án A

Đặt t = 2 x > 0 ⇒ t 2 − 2 m t + m + 2 = 0  

ĐK PT có 2 nghiệm phân biệt là: Δ ' = m 2 − m − 2 > 0 S = 2 m > 0 P = m + 2 > 0 ⇔ m > 2  

Khi đó: 2 x 1 = t 1 2 x 2 = t 2 ⇒ x 1 = log 2 t 1 ;   x 2 = log 2 t 2  

Để   x 1 ; x 2 > 0 ⇔ t 1 > 1 ;   t 2 > 1 ⇔ t 1 + t 2 > 2 t 1 − 1 t 2 − 1 > 0 ⇔ 2 m > 2 m + 2 − 2 m + 1 > 0 ⇔ 1 < m < 3

Vậy m ∈ 2 ; 3  

5 tháng 7 2021

a, x = 3 , x= -1

b, m = 3 , m = 1