Giá trị lớn nhất của biểu thức M = -x² - 4y² + 2x - 12y - 10 bằng bao nhiêu mọi người.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giá trị lớn nhất của biểu thức : -x2-4y2+2x-12y-10 là
A. 10
B. -10
C. 1D. 0
\(A=-x^2-4y^2+2x-12y-10\)
\(A=-\left(x^2-2x+1\right)-\left(4y^2-12y+9\right)\)
\(A=-\left(x-1\right)^2-\left(2y+3\right)^2\)
Vậy\(A_{max}=0\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-\dfrac{3}{2}\end{matrix}\right.\)
Ta có: \(A=3-x^2+2x-4y^2-12y\)
\(A=-\left(x^2-2x+1\right)-\left(4y^2+12y+9\right)+13\)
\(A=-\left(x-1\right)^2-\left(2y+3\right)^2+13\)
\(A=-\left[\left(x-1\right)^2+\left(2y+3\right)^2\right]+13\)
Ta thấy: \(\left(x-1\right)^2\ge0\forall x\)
\(\left(2y+3\right)^2\ge0\forall y\)
=> \(\left(x-1\right)^2+\left(2y+3\right)^2\ge0\forall x;y\)
=> \(-\left[\left(x-1\right)^2+\left(2y+3\right)^2\right]\le0\forall x;y\)
=> \(-\left[\left(x-1\right)^2+\left(2y+3\right)^2\right]+13\le13\forall x;y\)
=> \(A\le13\forall x;y\)
Dấu "=" xảy ra khi x=1; y=-3/2
Vậy GTLN của A là 13 khi x=1; y=-3/2
a) khi k=1000 thì giá trị của biểu thức là : ( 1000 - 10) x 5 = 990 x 5 = 4950
b) ta có: 9999 : 5= k- 10
1999,8 = k-10
k= 1989,8 - 10 =1979,8
đề bài hơi khó hiểu nên mik làm 2 cách:
a)khi k=1000 thì giá trị của biểu thức là : ( 1000 - 10) x 5x10 = 990 x 5x10 = 49500
b)
ta có: 9999 : 5 x10 = k- 10
19998 = k-10
k= 19898 - 10 =19798
học tốt ! :))
a) khi k=1000 thì giá trị của biểu thức là : ( 1000 - 10) x 5 = 990 x 5 = 4950
b) ta có: 9999 : 5= k- 10
1999,8 = k-10
k= 1989,8 - 10 =1979,8
đề bài hơi khó hiểu nên mik làm 2 cách:
a)khi k=1000 thì giá trị của biểu thức là : ( 1000 - 10) x 5x10 = 990 x 5x10 = 49500
b)
ta có: 9999 : 5 x10 = k- 10
19998 = k-10
k= 19898 - 10 =19798
Đáp án C
Suy ra f(t) đồng biến trên TXĐ và pt f(t) = 21 chỉ có 1 nghiệm duy nhất
Ta thấy t = 10 là 1 nghiệm của pt nên t = 10 là nghiệm duy nhất của pt
⇒ 11 − 2 x − y = 10 ⇒ y = 1 − 2 x ⇒ P = 16 x 2 ( 1 − 2 x ) − 2 x ( 3 − 6 x + 2 ) − 1 + 2 x + 5 = − 32 x 3 + 28 x 2 − 8 x + 4 P ' = − 96 x 2 + 56 x − 8 P ' = 0 ⇔ x = 1 4 x = 1 3 P ( 0 ) = 4 , P ( 1 3 ) = 88 27 , P ( 1 4 ) = 13 4 , P ( 1 2 ) = 3 ⇒ m = 13 4 , M = 4 ⇒ M + 4 m = 17
H=\(x^6-2x^3+x^2-2x+2\)
\(=x^6+2x^5+3x^4+2x^2-2x^5-4x^4-6x^3-4x^2-4x+x^4+2x^3+3x^2+2x+2\)
\(=x^2\left(x^4+2x^3+3x^2+2\right)-2x\left(x^4+2x^3+3x^2+2\right)+\left(x^4+2x^3+3x^2+2\right)\)
\(=\left(x^2-2x+1\right)\left(x^4+2x^3+3x^2+2\right)\)
\(=\left(x-1\right)^2\left(x^2+1\right)\left(x^2+2x+2\right)\)
\(=\left(x-1\right)^2\left(x^2+1\right)\left[\left(x+1\right)^2+1\right]\text{≥}0\)
Vì \(\left\{{}\begin{matrix}\left(x-1\right)^2\text{≥}0\\\left(x^2+1\right)\text{≥}1\\\left(x+1\right)^2+1\text{≥}1\end{matrix}\right.\)
⇒ MinH=0 ⇔ \(x=1\)