K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Lấy n là trung điểm của ad NM=5cm. Mà N là trung điểm của ad => an=mn=5cm => NM=\(\frac{1}{2}\)ad . Xét tam giác ADN có NM=\(\frac{1}{2}\)ad

=> Tam giác amd vuông ở m hay am vuông góc dm.

NV
23 tháng 4 2022

a.

Do \(AB=AC\Rightarrow\Delta ABC\) cân tại A

\(\Rightarrow AM\) là trung tuyến đồng thời là đường cao

\(\Rightarrow AM\perp BC\) (1)

Mà \(\left\{{}\begin{matrix}AD\perp AB\left(gt\right)\\AD\perp AC\left(gt\right)\end{matrix}\right.\) \(\Rightarrow AD\perp\left(ABC\right)\Rightarrow AD\perp BC\) (2)

(1);(2) \(\Rightarrow BC\perp\left(ADM\right)\)

b.

Từ A kẻ \(AE\perp DM\) (E thuộc DM)

Do \(BC\perp\left(ADM\right)\Rightarrow BC\perp AE\)

\(\Rightarrow AE\perp\left(BCD\right)\Rightarrow AE=d\left(A;\left(BCD\right)\right)\)

\(BC=\sqrt{AB^2+AC^2}=5\sqrt{2}\Rightarrow AM=\dfrac{1}{2}BC=\dfrac{5\sqrt{2}}{2}\)

Hệ thức lượng trong tam giác vuông ADM:

\(AE=\dfrac{AD.AM}{\sqrt{AD^2+AM^2}}=\dfrac{5\sqrt{3}}{3}\)

c.

Do \(AD\perp\left(ABC\right)\) theo cmt \(\Rightarrow AM\) là hình chiếu vuông góc của DM lên (ABC)

\(\Rightarrow\widehat{DMA}\) là góc giữa DM và (ABC)

\(tan\widehat{DMA}=\dfrac{AD}{AM}=\sqrt{2}\Rightarrow\widehat{DMA}\approx54^044'\)

NV
23 tháng 4 2022

undefined

30 tháng 1 2019

Đáp án A

2 tháng 4 2017

a: Xét tứ giác ADBK có

M là trung điểm chung của AB và DK

=>ADBK là hình bình hành

=>AK=DB

mà DB=AC(ABCD là hình chữ nhật)

nên AK=AC

=>ΔAKC cân tại A

b: Xét ΔIAM có IE là phân giác

nên \(\dfrac{ME}{EA}=\dfrac{IM}{IA}\)

mà IA=IK

nên \(\dfrac{ME}{EA}=\dfrac{IM}{IK}\)

Xét ΔIMK có IF là phân giác

nên \(\dfrac{IM}{IK}=\dfrac{MF}{FK}\)

=>\(\dfrac{ME}{EA}=\dfrac{MF}{FK}\)

Xét ΔMAK có \(\dfrac{ME}{EA}=\dfrac{MF}{FK}\)

nên EF//AK

Ta có: EF//AK

AK//BD(AKBD là hình bình hành)

Do đó: EF//BD

NV
13 tháng 1

a.

Xét tứ giác ADBK có: hai đường chéo AB và DK cắt nhau tại trung điểm M của mỗi đường

\(\Rightarrow ADBK\) là hình bình hành

Do ABCD là hình chữ nhật \(\Rightarrow AB\perp BC\Rightarrow AB\) là đường cao tam giác ACK

Theo cmt, ADBK là hbh \(\Rightarrow BK=AD\)

Mà \(AD=BC\) (ABCD là hcn)

\(\Rightarrow BK=BC\Rightarrow AB\) là trung tuyến tam giác ACK

\(\Rightarrow AB\) vừa là đường cao vừa là trung tuyến nên tam giác ACK cân tại A

b.

Do IE là phân giác, áp dụng định lý phân giác trong tam giác IAM:

\(\dfrac{EM}{EA}=\dfrac{IM}{IA}\) (1)

Do IF là phân giác, áp dụng định lý phân giác trong tam giác IMK:

\(\dfrac{FM}{FK}=\dfrac{IM}{IK}\) (2)

Mà I là trung điểm AK \(\Rightarrow IA=IK\) (3)

(1);(2);(3) \(\Rightarrow\dfrac{EM}{EA}=\dfrac{FM}{FK}\Rightarrow EF||AK\) (định lý Talet đảo)

Theo c/m câu a do ADBK là hình bình hành \(\Rightarrow AK||BD\)

\(\Rightarrow EF||BD\)

NV
13 tháng 1

loading...

25 tháng 9 2021

https://olm.vn/hoi-dap/detail/227596914801.html

28 tháng 9 2019