K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2018

24 tháng 5 2019

Ta có đạo hàm : f’ (x) = 3ax2+ 2bx+ c.

 Dựa vào đồ thị hàm số y= f’(x) ; ta thấy đồ thị hàm số y= f’(x) là parabol có trục đối xứng là trục tung nên b= 0

+ Đồ thị hàm số y= f’(x)  đi qua 2 điểm (1; 5) và (0; 2)  ta tìm được: a=1 và c=2.

Suy ra: f’(x)  = 3x2+ 2 và f( x) = x3+ 2x+ d,

+ Do  đồ thị hàm số (C) đi qua gốc toạ độ nên 0=0+0+ d

Suy ra: d= 0.

 Khi đó ta có: f(x) =x3+ 2x và f( 3) –f(2) =21

Chọn D.

1 tháng 6 2019

Chọn C

22 tháng 9 2019

+ Ta có đạo hàm : f’ (x) = 3ax2+ 2bx+ c.

 Dựa vào đồ thị hàm số y= f’( x),  ta thấy đồ thị hàm số y= f’ (x)  là parabol có trục đối xứng là trục tung nên b=0

Đồ thị hàm số y= f’( x) đi qua 2 điểm (1;0) và (0; -3) thay vào f’(x) ; ta tìm được: a=1 và c= -3.

Suy ra: f’(x) = 3x2-3b và  f(x) = x3-3x+d.

+ Do (C) tiếp xúc với đường thẳng y= 4 tại điểm có hoành độ âm nên ta có:

f’(x) =0 khi và chỉ khi x= -1;x= 1( loại)

Như vậy (C) đi qua điểm (-1; 4) ta tìm được d= 2

 Khi đó; f( x) =x3-3x+2.

chọn A.

22 tháng 11 2019

Đáp án C

Phương pháp : Xác định hàm số f’(x) từ đó tính được 

Cách giải : Ta dễ dàng tìm được phương trình parabol là

Đồ thị hàm số đi qua gốc tọa độ 

15 tháng 4 2018

+ Từ đồ thị của hàm số   a> 0 ta dễ dàng có được đồ thị hàm số y= f’(x)  như sau:

Ta có : f’(x) = 4ax3+ 2bx

 Đồ thị hàm số y= f’(x)  đi qua  ta tìm được a=1 và b= -2

Suy ra hàm số đã cho có dạng: f(x) =x4-2x2+d và f’(x) = 4x3-4x.

+ Do (C) tiếp xúc với trục hoành nên f’(x) = 0 khi x=0; x=1; x=- 1.

Do (C) đối xứng qua trục tung nên (C) tiếp xúc với trục hoành tại 2 điểm (1; 0) và (-1; 0).

Do đó: f(0) =1  suy ra 1= 0-2.0+ d nên d= 1

Vậy hàm số cần tìm là: y =x4-2x2+1 

+ Xét phương trình hoành độ giao điểm của (C) với trục hoành:

x4-2x2+1  =0 nên x=± 1

Chọn D.

 

29 tháng 12 2018

Ta có đạo hàm : f’ (x) = 3ax2+ 2bx+ c.

 Dựa vào đồ thị hàm số y= f’ ( x) ta thấy đồ thị hàm số y= f’ (x) đi qua 3 điểm

( -1; 0) ; (3; 0) ; (1; -4)

 Thay tọa độ 3 điểm này vào hàm f’ ta  tìm được: a= 1/3; b= -1; c= -3.

Suy ra: f’ (x) = x2-2x-3 và f(x) = 1/3.x3-x2-3x+d.

Do (C) tiếp xúc với đường thẳng y= -9  tại điểm có hoành độ dương nên ta có:

F’(x) =0 khi và chỉ khi  x=3 ( x= -1 bị loại vì âm)

Như vậy (C) đi qua điểm (3; -9) ta tìm được d=0.

Vậy hàm số đề bài cho là f(x) = 1/3.x3-x2-3x.

Xét phương trình trình hoành độ giao điểm và trục hoành: 

. 1 3 x 3 - x 2 - 3 x = 0 ⇔ x = 0 ; x = 3 ± 3 5 2 S = ∫ 3 - 3 5 2 3 + 3 5 2 1 3 x 3 - x 2 - 3 x d x = 29 , 25

Chọn C.

4 tháng 11 2016

Xác định hệ số a, biết rằng đồ thị của hàm số y=ax đi qua điểm A(6;2).Điểm B(-9;3), điểm C(7;-2) có thuộc đồ thị hàm số không ? Tìm trên đồ thị của hàm số điểm D có hoành độ bằng -4,điểm E có tung độ bằng 2

2 tháng 12 2016

1,04 m

tk mk nha

mk sẽ tk lại

hứa mà

22 tháng 4 2020

Bài 1 :

Với x = 1 thì y = 4.1 = 4

Ta được \(A\left(1;4\right)\) thuộc đồ thị hàm số y = f(x) = 4x

Đường thẳng OA là đồ thị hàm số y = f(x) = 4x

y x 4 3 2 1 1 2 3 4 -1 -2 -3 -4 y=4x A

a) Ta có : \(f\left(2\right)=4\cdot2=8\)

\(f\left(-2\right)=4\cdot\left(-2\right)=-8\)

\(f\left(4\right)=4\cdot4=16\)

\(f\left(0\right)=4\cdot0=0\)

b) +) y = -1 thì \(4x=-1\) => \(x=-\frac{1}{4}\)

+) y = 0 thì 4x = 0 => x = 0

+) y = 2,5 thì 4x = 2,5 => \(4x=\frac{5}{2}\)=> x = \(\frac{5}{8}\)

Bài 2 :

a) Vẽ tương tự như bài 1 

b) Thay \(M\left(-2,6\right)\)vào đths y = -3x ta có :

y =(-3)(-2) = 6

=> Điểm M thuộc đths y = -3x

c) Thay tung độ của P là 5 vào đồ thị hàm số y = -3x ta có :

=> 5 = -3x => \(x=-\frac{5}{3}\)

Vậy tọa độ của điểm P là \(P\left(-\frac{5}{3};5\right)\)