Biết rằng đường thẳng y = x - 1 cắt đồ thị hàm số y = x 3 - 3 x 2 + x + 3 tại hai điểm phân biệt; kí hiệu ( x 1 ; y 1 ) , x 2 ; y 2 là tọa độ của hai điểm đó. Tính y 1 + y 2
A. y 1 + y 2 = - 1
B. y 1 + y 2 = 1
C. y 1 + y 2 = - 3
D. y 1 + y 2 = 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Xét phương trình hoành độ giao điểm
x2 – 4x – 1 = 0
Giả sử A(2 + 5 ; 5 ); B(2 - 5 ; - 5 ) => yA + yB = 0
Đáp án A
Phương trình hoành độ gioa điểm của d và (C) là
Suy ra suy ra Dễ dàng tính được
Đáp án A
Điều kiện: x ≠ 1.
Hoành độ giao điểm của đường thẳng y = x + m và đồ thị hàm số y = x x - 1 là nghiệm của phương trình
Vậy đường thẳng y = x + m cắt đồ thị hàm số y = x x - 1 tại hai điểm phân biệt với mọi m.
Giải:
PT hoành độ giao điểm:
\(mx+2m-\frac{3}{x}=0\Leftrightarrow mx^2+2mx-3=0\)
Dễ thấy \(m\neq 0\)
1. Để thu được điều thỏa mãn thì trước tiên \(\Delta'=m^2+3m>0\Leftrightarrow \) \(m<-3\) hoặc \(m>0\)
Áp dụng định lý Viete:\(\left\{\begin{matrix} x_1+x_2=-2\\ x_1x_2=\frac{-3}{m}\end{matrix}\right.\)
2. Từ suy ra để có hai hoành độ trái dấu thì \(x_1x_2<0\Leftrightarrow \frac{-3}{m}<0\Leftrightarrow m>0\)
Từ 1,2 suy ra \(m>0\) là tập giá trị cần tìm.
Đáp án A
PT hoành độ giao điểm là x + 1 = x + 3 x − 1 ⇔ x ≠ 1 x 2 − x − 4 = 0 , Δ = 17 > 0 ⇒ x A + x B = 1 y A + y B = − 4
Suy ra A x A ; x A + 1 B x B ; x B + 1 ⇒ A B = 2 x A − x B 2 = 2 x A + x B 2 − 8 x A x B = 2 1 2 − 8 − 4 = 34
PT hoành độ giao điểm là
(3m-1) x+ 6m+ 3 == x3-3x2+ 1 hay x3-3x2 – (3m-1) x-6m-2=0 ( *)
Giả sử A( x1; y1) ; B( x2; y2) lần lượt là giao điểm của (C) và (d)
Vì B cách đều hai điểm A và C nên B là trung điểm của AC
Suy ra x1+ x3= 2x2
Thay x2= 1vào , ta có
Vậy -1< m< 0
Chọn C.
Chọn C.
Phương pháp
Xét phương trình hoành độ giao điểm.
Đường thẳng cắt đồ thị (C) tại hai điểm phân biệt nếu phương trình hoành độ giao điểm có hai nghiệm phân biệt.
Cách giải:
ĐKXĐ: x ≠ 1
Xét phương trình hoành độ giao điểm x - 1 x + 1 = -x + m (*)
Với x ≠ -1 thì (*) ⇔ x - 1 = (x+1)(-x+m)
Đường thẳng y = -x + m cắt đồ thị tại hai điểm phân biệt ⇔ phương trình (**) có hai nghiệm phân biệt khác -1.
Vậy m ∈ ℝ
Đáp án A
Hoành độ giao điểm của đt y = x - 1 và đồ thị y = x 3 - 3 x 2 + 4 = 0 là nghiệm của PT
x 3 - 3 x 2 + x + 3 = x - 1 ⇔ ( x + 1 ) ( x - 2 ) 2 = 0 ⇔ x 1 = - 1 x 2 = 2 ⇒ y 1 = - 2 y 2 = 1 ⇒ y 1 + y 2 = - 1